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Abstract

The nonlinear problem of tracking and predicting where a satellite will be over some time
can be difficult with the recognition of modeling error and ground site radar tracking errors.
For this reason it is important to have an accurate modeling program with the fidelity to cor-
rect for any errors in orbital motion and predict the most accurate positioning at some future
time. The Extended Kalman Filter is one such program that can accurately determine posi-
tion over time given estimate ranges for sources of error. However, the Extended Kalman
Filter contains many linear approximations that allow its prediction and correction methods
to work. This paper will discuss the effects of replacing the linearizing approaches made in
the orbital model part of the program with numerical small-step approaches. The overall
errors during prediction will be compared for an analysis of the corrective ability of the
filter. Additionally a final prediction at a later date and another location will serve as an
indicator to the usefulness of the prediction capabilities over time.

In exploring these effects, it will be shown that the linearizing approximations made in
the development are a good approximation to the numerical results. The effects of modeling
error, perturbation effects included, and the degree of approximation all play a significant
role in accuracies of prediction. The effects of removing linearizations are small in com-
parison to the effects of perturbations and modeling error. The results of the numerical ap-
proximations contain a great robustness and as such help simplify the modeling process. The
modeling process is discussed with reference to ADA program code. With these results it
can be seen that there are several methods of using the Extended Kalman Filter for orbital
prediction which maintain a high degree of accuracy and can be very useful when applied
to real-world satellite prediction.

Introduction

The application of satellites takes many forms including international communi-
cations and television relay to space-based telescopes. However, a satellite’s effec-
tiveness is directly based on the ability to track and communicate with the
spacecraft over its lifetime. In order to track a satellite, a ground station will use a
site-defined coordinate frame to track the motion. This coordinate frame uses the
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distance from the site to the satellite (�), the azimuth angle (Az), and the elevation
angle (El) to determine where in the sky a satellite is at some time. The ability for
a ground station site to find and track a satellite is based of the predictions made by
mathematical models of the orbit. The more accurate a model can be at predicting
a satellite’s motion, the more successful a ground station will be at finding and
tracking the satellite. 

This paper discusses methods of improving an Extended Kalman Filter to im-
prove the orbital determination and prediction process. Small perturbations felt by
an orbiting body cannot be fully modeled. Additionally errors in the method of ob-
taining the actual position and velocity from radar data will cause errors. For these
reasons it is essential to use a filtering device such as the Kalman Filter to statisti-
cally determine the most probable position of a satellite. This method also contains
some errors in its prediction algorithms that take the form of mathematical lin-
earizations. By seeking methods of reducing these linearizations this paper explores
methods of improving the Extended Kalman Filter for better overall prediction and
orbit determination. This approach has not been used before in the Extended
Kalman Filter.

Because there are only a limited number of ground stations around the Earth, a
satellite cannot be continuously tracked. Once a connection is lost, only the pre-
diction of where the satellite will be at some later time can help in reestablishing
communication. One of the most accurate methods of establishing a model that
takes the orbital determination errors into account is the Extended Kalman Filter.
The Extended Kalman Filter (EKF) is a stochastic estimation algorithm. The EKF
simply uses a weighted statistical average of the difference in position and velocity
inputs predicted from the model and known from the ground site to correct the
model towards more precise predictions based on the known errors in those inputs.
The EKF can be tuned to use anything from the basic two-body orbit model to
highly accurate multi-perturbation model for its predictions. The effects of recog-
nizing initial modeling error can also be explored making the EKF a valuable orbit
prediction and modeling tool. Figure 1 shows the big picture of how the EKF is
used in orbital modeling. Observations from one site allow for continual orbital
model refinement and prediction to another site.
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FIG. 1. Big Picture Model of Orbital Determination.



The normal Kalman Filter was created for linear applications. Because many
systems like orbital motion are nonlinear, the extended filter makes many approxi-
mations to reduce nonlinear systems to linear models. For these reasons, the EKF
has been the subject of several academic studies. At the Air Force Academy, an
EKF was designed for an orbital determination scenario and the filter’s stability
was explored over a wide range of initial inputs and models [1]. The same initial
EKF orbit model and scenario is explored in this paper. While the Academy’s
effort focused on the stability of the EKF on the initial orbit model, this paper
expands from this to explore possible methods of optimizing the EKF results by
removing linearizing assumptions made during the initial nonlinear reduction to a
linear system.

By examining two methods of removing linearizations, this paper explores the
effects of linear modeling assumptions as well as what inputs have the greatest
effects on the orbit prediction. Linearizing approximations made during the crea-
tion of the EKF algorithm are replaced with numerical approximations that allow
for nonlinear perturbation effects. The EKF algorithm attempts to minimize the dif-
ference in predicted and observed values at each ground site observation. To ex-
plore the effectiveness of removing linearization in the algorithm, the root mean
square error in each site observation in position (R) and velocity (V) is explored
over a pass of the Mahe Island ground station. Fifteen observations every
twenty seconds are made during that pass. However, the true prediction power of
the EKF comes from not only accurately predicting the next observation at the
same ground station, but also accurately predicting an observation at another sta-
tion over some large time. The errors in predicted �, Az, and El at the Thule ground
station are also explored to determine the effects of removing linearizations. The
idea of model refinement towards better predictions of the true orbit is similar to
the theoretical mathematical model shown later in Fig. 2. The effects of initial
model errors and the addition of perturbations to the model are also explored to de-
termine the effectiveness of removing linearizations. With a better understanding of
the issues involved in orbital determination and possible ways to improve these re-
sults, conclusions can be developed on the linearizing nature of the Extended
Kalman Filter. The conclusions developed in this paper will allow more effective
modeling of satellite motion for the insured use of these assets.

The Extended Kalman Filter

Initial Model Assumptions

The Extended Kalman Filter can be a very accurate model for orbital prediction;
however, there are several assumptions that go into the design of the filter. The al-
gorithm itself uses a basic model for satellite motion based on the two-body equa-
tion of motion. Several perturbation effects are added to this model in this paper,
even though there is no way to fully capture all of the characteristics of a satellite’s
motion. The very nature of the statistical averaging in the algorithm also makes the
assumption that none of the input data into the system are completely accurate once
any error is specified in the input. As the filter attempts to further linearize the mo-
tion of a satellite over time, a first or second order Taylor series is used [2]. This ap-
proximation makes the assumption that only one or two terms of a Taylor series are
a good approximation. These assumptions help to linearize the nonlinear problem
of orbital motion. The purpose of this paper is to remove some of the linearization
modeling assumptions in the Extended Kalman Filter.
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Generalized Math Technique

The Extended Kalman Filter algorithm is made of two primary pieces, a pre-
diction component and a correction component. Both of these components help to
create an active algorithm that will statistically compensate a model of an orbit
to minimize the observed and predicted position values and velocity state values.
The EKF requires several initial inputs in order to work properly. These inputs in-
clude: the latitude, longitude, and altitude of the ground site; the individual radar
site biases; the initial error covariance matrix (matrix Pi); the error expected from
the radar site data (vector Rerror); the estimated system dynamic modeling error
(matrix Qi); and the number and type of perturbation effects to consider [3]. The
following perturbations are explored: J2, J3, J4, drag, Sun, and Moon (the satellite’s
ballistic coefficient (BC) will be given to calculate the drag perturbation). In this
project, either all or none of the possible perturbation effects are considered. The
initial Pi matrix, Rerror vector, radar biases, and ground site data are given for this
problem and will remain constant. The initial Qi is either zero or (This is
the same modeling error estimation assumed from the original Lyapunov Stability
analysis.) The nature of these inputs are further explored throughout this paper. The
Qi, Rerror, and Pi quantities are shown below in equations (1)–(3). The six-by-six na-
ture allows for the position and velocity in each inertial axis to be represented.
Additionally, the initial two-body state model is shown in equations (4) and (5).
With these inputs and the initial model established, the EKF is posed to begin its
stochastic estimation process.
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Prediction Process

The Extended Kalman Filter’s primary purpose is to establish very accurate pre-
dictions of an orbit over time knowing the error that is expected in the model and
the actual measurements [1, 2]. The satellite’s motion is initially linearized to either
a first or second order Taylor series transition matrix. This state transition matrix
allows for the prediction of the states of position (R) and velocity (V) at some fu-
ture time The state transition matrix is based on the rate of change in V verses
the rate of change of the R and is defined as the F matrix. Both the state transition
matrix and the F matrix are shown in equations (6) and (7) respectively [2].

(6)

(7)

The Cowell method of orbit propagation is used to update the states and the error
covariance matrix (P). The Cowell method of orbit determination uses the fourth
order Runge-Kutta (RK4) approximation method to solve the differential equation
for the new states (X) at some time This differential equation can be seen below
in equation (8), where variables with bars over the top are the predicted values and
variables with hats are the corrected estimations. The RK4 method propagates the
states over 100 time steps between every 20-second observation gap and between
the long gap in time to the Thule site. Error covariance of the new states will be pre-
dicted from the state transition and the estimated error covariance as shown in equa-
tion (9). This idea can be seen in Fig. 2 showing the mathematical process of
predicting and correcting the states end error over time [2].

(8)

(9)

From estimated values, new predicted orbital values can be found, but these val-
ues are of little use for further propagation if they do not match the actual observa-
tions. This is where the correction process of the EKF identifies its usefulness. The
first step in correcting the system is to establish the error between predicted values
and actual observations. This is done through the H matrix as shown below in
equation (10) [2]. Because it is known that the radar site data contains errors as well
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FIG. 2. Correction Process.



as the predictions, a statistical analysis process will be needed to correct the pre-
dictions and create new estimations of the states [4]. The next step in the process is
the development of the Kalman Gain matrix (K). The K matrix uses the statistical
weighed average of the predicted error covariance and the known radar site errors
to establish a gain that will seek to minimize the diagonals of the estimated error
covariance matrix. The K matrix can be seen in equation (11) [2]. With this data,
estimations of the states and the error covariance can be created from a correction
of the original predictions and the actual site information. These correction equa-
tions can be seen below in equations (12) and (13), where the term is the
difference in the observed states versus the predicted states [2].

(10)

(11)

(12)

(13)

Orbit and Measurement Performance

Orbit

The EKF scenario that is explored in this project is that of a satellite with the fol-
lowing set of orbital elements:

Semimajor Axis: 6697.0 km
Eccentricity: 0.0177
Inclination: 96.74°
Long. of the Ascending Node: 94.68°
Argument of Perigee: 57.35°
Mean Anomaly: 0.0°

The given satellite is the same as that used in the original Academy study [1]. This
satellite is in a nearly circular low Earth orbit. A visual representation of this satel-
lite and the monitoring ground stations can be seen in Fig. 3.

Measuring Sites and Performance Data

In order for an Extended Kalman Filter to work as an orbital optimization tool, it
is necessary to have ground site observations of that orbit which can be used to
correct the orbital model. Both the Mahe and Thule ground stations are used for
this project and analysis. The Mahe ground station is located at 4.8° south and
55.5° east. This station will provide the primary measurements of the �, Az, and El
of the satellite. These measurements can be easily converted to R and V vectors for
the satellite given a known location and time of the observations. The date of these
observations is 11 May 1995. The biases in the ground site radar and the noise
expected from these observations can be seen in Table 1. Computer generated obser-
vations of the orbit with error can be seen in Table 2. The RMS error of these
observations to the predicted results at each observation is used as one measure of
performance. The orbital prediction capability of the EKF can then be compared to
another ground site to determine the accuracy of the model. The second site used
for observation is that of Thule, Greenland at 76.57° north and 68.3° west. The

P̂�tn� � �I � K H� P̄�tn�

X̂�tn� � X̄�tn� � K�Z � gX̄�tn��
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X̄

�Z � gX�

6 Vergez, Sauter, and Dahlke



biases and expected noise of this site can be seen in Table 3. This observation is
made 21 minutes and 20 seconds after the last Mahe observation. Error difference
between this observation and model’s predicted results will be compared to provide
another measure of performance [4, 5].
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FIG. 3. STK Graphical Representation of Modeling Scenario.

TABLE 1. Measurement Characteristics of Mahe Ground Station

Measurement Biases Standard Deviation �

� (km) 0.15 0.15
Az (deg) 0.0001 0.01
El (deg) 0.0001 0.01

TABLE 2. Measurement Data from Mahe Ground Station

Hour Minutes Seconds r (km) Az (deg) El (deg)

11 50 0 1770.334 195.1388 1.737
11 50 20 1636.96 197.6087 3.0125
11 50 40 1507.572 200.5082 4.414

11 51 0 1382.047 203.9435 5.8441
11 51 20 1262.499 208.0942 7.4128
11 51 40 1150.56 213.1119 9.0443

11 52 0 1049.464 219.2097 10.7308
11 52 20 961.3957 226.5796 12.3925
11 52 40 891.6892 235.4314 13.8777

11 53 0 844.4838 245.5759 14.9465
11 53 20 823.1501 256.6734 15.3395
11 53 40 829.9796 267.9568 14.9301

11 54 0 865.0305 278.6099 13.8245
11 54 20 924.6791 288.0676 12.2013
11 54 40 1003.953 296.0857 10.3958



Matching Results

In the analysis of an EKF, it is important to establish an accurate reference model
from which to expand. First, the results of the initial Academy study were dupli-
cated using the EKF in [1]. Several more accurate constants of motion and pertur-
bation effects were added to this model. The results of the Academy’s study were
reproduced and a comparison of these results can be seen in Table 4. Matching
these results helped establish a baseline for improvement.

Nominal Results

The following figures represent the possible input options and the error results
for the Mahe observations. Some of the possible input options on the initial EKF
are as follows: 1st versus 2nd order Taylor series, zero versus all perturbation ef-
fects, and zero versus modeling error for the filter. It can be seen from
these results that the largest difference in model results can be seen with the addi-
tion of modeling error. Both Figs. 4 and 5 show these results for the RMS position
and velocity results respectively. It is important to note that all of the RMS error
plots in this report are graphed with respect to the Julian date (JD) of observations.
However, these observations are made twenty seconds apart as seen in Table 2.

Design Improvement Methods

The focus of this project is on the improvement of the EKF orbital determination
modeling process. In particular, improving the EKF by removing linearizing as-
sumptions will be explored. Assumptions on F and � in particular are the interest
of this analysis. These matrices are concerned with the prediction portion of the
EKF [6, 7]. Improving the prediction process is one method of improving the over-
all modeling capability. There are many other methods of improvement that can be
explored, however the biggest advantage in modeling capability would be the ad-
dition of all the known perturbation effects and the removal of these linearization
results. For each of the linearizing assumptions, the mathematical techniques used
to remove the assumption and the results of these changes are discussed in follow-
ing sections. Many of the outlining causes of these results will be analyzed. Con-
clusions on possible uses of these results and nonlinearizations are discussed.

1 � 10�7
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TABLE 3. Measurement Characteristics of Thule Ground Station

Measurement Biases Standard Deviation �

� (km) 0.0708 0.026
Az (deg) 0.0013 0.026
El (deg) 0.0075 0.022

TABLE 4. EKF Data Matching Results Comparison: At Thule’s First Observation Using
Original 1995 Data

Observed Computed Calculated Error Error Results

Rho (km) 1194.8692 1205.322457 10.453257 38.54
Az (degs) 34.8631 35.53747 0.67437 1.38
El (degs) 6.3154 6.569847 0.254447 0.78
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FIG. 4. Initial RMS Error Plot of Position (km) Including Modeling Error.

FIG. 5. Initial RMS Error Plot of Velocity (km
sec) Including Modeling Error.



F Matrix Nonlinearization

In the initial development of Extended Kalman Filter model, the change in the
rates of change in the states versus the change in states themselves, or F matrix, is
important to the understanding and modeling of orbital motion. The initial F ma-
trix equation can be seen in equation (7). This equation is a very key component to
developing orbital motion and the EKF algorithm. However, in order for the EKF
to use this matrix, an analytic approximation approach must be used to reduce the
equations of motion into a usable form. As seen in equation (14), most parts of the
matrix go to zero or to identity except for one portion. Using only the two-body
equations motion, analytic approximations for each of the terms in nontrivial por-
tion of equation (14) can be found [2], [3], [5]. This lower nontrivial portion can be
seen in equation (15). A series of nine equations can be painstakingly developed to
solve for the final F matrix. However in the development of this approach to lin-
earizing the F matrix differentials, many of the effective perturbation terms are lost
and cannot be used in the orbital motion model [2].

(14)

(15)

The two-body acceleration is denoted by the components and 

Mathematical Technique and Implementation

In order to remove this linearization effect and include all of the perturbation
terms in the model another approach to creating the F matrix must be developed.
The equation for this development can be seen in equation (16) below. The actual
implementation of this equation requires a change in the position vector that is then
feeding the change back into the RK4 prediction algorithm to determine the accel-
erations that would have been felt by that change. Small changes in each inertial di-
rection (i, j, and k) for each term will complete the lower portion of equation (15).
By assuming only small perturbations in the model, the small numerical changes in
the rate of change in states can be compared to the small numerical changes in the
states themselves. This approximation is very similar to the finite differential analy-
sis development of the H matrix.
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Rĵ

F 	 � 0


V̇̄

R̄

I

0� l Where 

Ak̂.Aî, Aĵ,
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Note that the acceleration now includes two-body accelerations as well as all the re-
quested perturbation accelerations.

In the development of this approach it is necessary to understand what sort of
“small” step in position will accurately model the acceleration perturbations that
may be felt. To get an idea of the needed step size in position that should be taken,
the acceleration felt by the system was graphed with respect to the position. These
results can be seen in Figs. 6 and 7. By inspection, a position step size of 0.001R,
roughly 6 km, should be able to accurately model the perturbations. This is because
a small size is needed to model the curl at the end of the acceleration in the j di-
rection. However, to ensure these results, the step size was tested over a wide range
as seen in the comparison figures.

Results

The result of this implementation in the Extended Kalman Filter algorithm can
be seen in the sets of data from both the Mahe and Thule ground stations. The RMS
error in both R and V were plotted versus time of the observation. These results
compared with this nominal model results and the same inputs can be seen in the
figures. As can be seen from these results, there is relatively no difference in the
modeling ability of the new numerical F approach. These results are displayed in
Figs. 8 and 9. To explore what effects differing step sizes would have a range of
multiplication factors were input into the same model as can be seen in Fig. 10. Due
to the fact that the small position changes will only affect velocity terms, only the
RMS velocity errors will be shown to explore different step sizes. These results can
be seen in Fig. 10. Figure 11 goes on to explore the effects of modeling error on the
numerical F matrix, again only the velocity is shown because that is the only
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FIG. 6. Acceleration Versus Position Curve in the i and k Directions.
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FIG. 7. Acceleration Versus Position Curve in the j Direction.

FIG. 8. Numerical F Matrix RMS Error Plot Comparison of Position (km).
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FIG. 9. Numerical F Matrix RMS Error Plot Comparison of Velocity (km
sec).

FIG. 10. Numerical F Matrix RMS Error Plot of Velocity with Position Step Factor Comparison.



factor that experiences any observable effect. It can also be seen from these graphs
that using a second order Taylor series approximation will yield results similar to
the initial results, which include modeling error. However, using only a first order
Taylor series will negate the effects of any modeling error. The best results come
from the largest step size multiplication factor, roughly 60 km. These results are
very small and have virtually no effect on the system. For all purposes the step size
is not that significant of a factor in the F matrix approximation.

To examine the effects of this F matrix correction, several inputs were varied and
the RMS outputs were plotted. These results from varying the Taylor series ap-
proximation are used and the number of perturbation effects can be seen in the pre-
vious Figs. 10 and 11. The results appear to be very similar to those of the previous
cases. However there are larger and more variable RMS error results with the second-
order Taylor series. Upon inspection of all of the final Thule results of the test cases
with their variable changes, an interesting fact arises. The cases where all of the
perturbation effects were added to the model produce better results. However, the
cases that include a second-order modeling term are far more accurate than all of
the above. These error results in the predicted versus actual �, Az, and El can be
seen in Table 5. This table includes all of the initial test cases with the original EKF
as well as all of the test results with the new numerical F matrix approach. It is also
important to note that there was no effect on these results with the implementation
of modeling error when a first order Taylor series approximation was used.

Numerical F Matrix Conclusions

It can be seen from the results above that the largest variation in modeling results
comes from the accuracy of the order of the � matrix Taylor series approximation.

14 Vergez, Sauter, and Dahlke

FIG. 11. Numerical F Matrix RMS Error Plot of Velocity with Modeling Error (Step Factor � 0.001).
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The use of the second order Taylor series is accurate enough to actually capture the
effects of a modeling error. The results from each test case nearly match all of the
initial data results with similar initial configurations. In cases where more error
arose than the initial model, it appears that more rounding error played a part in
looking at the small acceleration changes. The F matrix still relies on the RK4 al-
gorithm, which inherently contains some error. In conclusion, it seems that the
F matrix two-body linearization is a good assumption to make, and the largest dif-
ferences come in the manipulation of the state transition matrix. The results using
a better � matrix approximation are significantly greater and thus beg for a better
understanding. For this reason completely removing the Taylor series approxima-
tion and the need for the F matrix from the � matrix is explored. 

� Matrix Nonlinearization

The � matrix is the state transition matrix of the Extended Kalman Filter. This
matrix allows the filter to predict how the error covariance of the states will change
with time [2]. In the current use of the EKF, the � matrix is approximated by a sec-
ond order Taylor series as seen in equation (6). However, this approximation can
cause error in the loss of the higher order Taylor series terms used to solve the dif-
ferential equation shown in equation (17). This equation is from what derives the
initial need for the F matrix. By using a different approach, the idea of a state tran-
sition matrix can be solved without the need of a differential equation, and thus
without the need of the Taylor series or the F matrix.

(17)

Mathematical Technique and Implementation

The � matrix is merely the equations of state necessary to transfer from the ini-
tial states to some final state [6]. This relationship can be seen in equation (18) [2].
Much like the numerical finite differential analysis approach taken with F, the �
matrix will perturb an initial state and propagate it forward to compare it with the
nominal propagated state. By establishing the difference in perturbations results in
each direction compared to the initial perturbations, the � matrix can be directly
solved for as seen in equation (19).

(18)

(19)
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Results

The results of this simple algorithm are very elegant and also very surprising. In
the establishment of the new algorithm, it was once again necessary to determine a
proper step size in position. The ratio of the position step size to the velocity step
size is also a variable to be determined. The ratio value of 0.001 (which was used
in previous studies) seemed the best choice since the velocity was on average three
orders of magnitude less than the position. The effects of perturbations in the orbit
as well as the effects of modeling error were explored in this analysis. The com-
parison of these variables with the initial estimate at position step size (dx) and ratio
factors can be seen in Figs. 12 and 13. The greatest effects on the data in this case
occur when the modeling error is applied. When compared to the results from the
initial filter plots, these plots are nearly identical (this result can also be seen in the
Thule data site comparisons). The use of modeling error matches the second-order
Taylor series approximation and without the use of modeling error matches the
first-order results. These initial results can be found in Figs. 4 and 5. In the com-
parison, when looking at the RMS error velocity plots of varying dx and ratio val-
ues over several orders of magnitude, it can be seen that there is hardly any change
in prediction errors. These comparison graphs can be seen in Figs. 14 and 15 re-
spectively. Once again only the velocity graphs are shown here because they show
the actual correlation to the new changes in adding acceleration terms. These results
show that the new numerical � approach is very robust and eliminates the need for
precise refinement when it comes to the dx and ratio estimations. 

The final prediction data produced from all of the possible test cases at the Thule
ground can be seen in Table 6. This data also includes a more robust set of varied
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FIG. 12. Numerical � Matrix RMS Error Plot Comparison of Position (km).
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FIG. 13. Numerical � Matrix RMS Error Plot Comparison of Velocity (km
sec).

FIG. 14. Numerical � Matrix RMS Error Plot of Velocity (km
sec) with dx Step Factor.



dx and ratio results and can be compared to the initial EKF results found in Table 5.
In this table, it can be seen that the first four cases involving the perturbations and
the modeling error nearly match the initial model results with the same variable
changes. These results help to show that the method works in its approximation and
that it is slightly more consistent than the original approximation. The unusual re-
sult from this entire test is in the fact that the model is very robust at handling a
large range in position and velocities step sizes. The model was tested to breaking,
failing the code, in the maximum (925 step factor) and minimum ( step
factor), in allowable ranges of dx and in ratio step size multiplication factors. These
tests produced no significant improvement in results other than the proof that the
model is very robust. In looking at the direct compensation error value,
that goes into the Kalman gain matrix to correct the system after each prediction,
the filter worked hard to correct the difference down to zero. Again there was no re-
sponse to varying the dx value used. These results are shown in Fig. 16. The pre-
dicted mathematic modeling process from Fig. 2 is reminiscent of the actual
process shown in Fig. 16.

Numerical � Matrix Conclusions

It can be seen from these results that the approach of removing the linearizing
approximations in the � matrix and allowing for all of the perturbation effects al-
lows the EKF to become very robust at modeling data of any sort. While it is still
not completely understood how the EKF can handle such a wide range in step size
inputs, it is plain to see that the best results come from the use of modeling error
and including all of the possible perturbation effects. This approximation is very

�Z � gX�,

1 � 10�7
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FIG. 15. Numerical � Matrix RMS Error Plot of Velocity (km
sec) with Ratio Step Factor Comparison.
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easy to implement in code and serves as a great modeling source as it is consistently
better than any other approximation method. This � matrix fix should be imple-
mented in future uses to improve the filter operations. This is because it is con-
stantly accurate while allowing for a robust range of step inputs and the use of an
imperfect model.

Overall Conclusions and Recommendations

It has always been the pursuit of science and engineering to try and find the best
way to produce the most accurate results. In the case of the Extended Kalman Fil-
ter, it is very hard to create the better mousetrap of orbital determination and mod-
eling. The Kalman filter is not just a simple process but involves a variety of
external inputs, complex matrix operations, and statistical determination to create
an optimizing algorithm for orbital determination. In the approach of removing lin-
earizing assumptions made during the initial creation of the EKF, it can be seen that
the results are not significantly better than those with the linear approximations. It
appears that the greatest improvement in results comes from knowing how to set up
the filter and what inputs are necessary. In looking at the comparison results of each
method, it appears that the model inputs used have the largest effects on the system.
These results also serve to prove the fact that the initial linearizations and approx-
imations created are a fairly accurate representation of the actual process. In light
of the results of the � matrix improvement, it is recommended that this change be
added in future systems. This matrix allows for a decrease in needed inputs into the
model and allows for a wide range of possible step multiplication factors. This sys-
tem would help ease implementation into orbital determination problems where the
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FIG. 16. Numerical f Matrix Direct Compensation Error Value, .�Z � gX�



modeling accuracy is never truly zero. While the perfect orbital determination soft-
ware can never be developed to handle all satellites, the Extended Kalman Filter
does a remarkable job of orbital modeling given some initial observations for fur-
ther optimization. 

This approach to removing some of the linearization in the system model is not
unique to the orbital determination problem. It is general enough that it can be ap-
plied to the estimation of almost any nonlinear system.
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