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A short experimental program was undertaken to evaluate the effect of low-amplitude
rotational oscillations on the wake of a circular cylinder at low Reynolds number (Re =
125). Using the experimental data, a low-dimensional model of the wake was developed
and evaluated. The experimental results reveal that the wake undergoes a transition from
the Karman vortex street to an asymmetric, with respect to the wake centerline, shedding
pattern at a critical value of the forcing (Ω1 ≈ 1). A POD analysis of the experimental
measurements reveal that the transition is quite abrupt, and that the new wake state is
of approximately the same dimension as the Karman vortex street. The low-dimensional
model of the flow qualitatively captures the vortex dynamics in the wake with relatively
few modes.

Introduction

THE wake of a circular cylinder at low Reynolds
number is the archetype for a flow exhibiting self-

sustained oscillations as a result of a hydrodynamic
resonance. At a Reynolds number above 50, this wake
oscillation is manifested as the Karman vortex street.
Abernathy and Kronauer1 linked the formation of the
vortex street to an instability in the wake. Later Koch2

identified that a direct resonance condition is present
in symmetric blunt body wakes. He connected this
condition to a region of absolute instability in the near
wake and the appearance of a vortex street. Triantafyl-
lou et al.3 used a linear stability analysis to show that
an absolute instability in a symmetric wake mode per-
mits disturbances to grow temporally at a fixed spatial
location in the near-wake. The non-linearities in the
flow limit the disturbance amplitude and ultimately a
self-sustained oscillation is established. The absolute
instability, however, is only a necessary condition for
the formation of the vortex street. Chomaz et al.4 re-
vealed that the length of the recirculation region must
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reach a critical length before the resonances that lead
to the vortex sheet occur. The work of Provansal et
al.,5 Monkewitz6 and others further established the
steady-periodic Karman vortex sheet as the result of
a saturated temporal global wake instability. From
the perspective of control, the circular cylinder wake
behaves as a non-linear, self-excited oscillator that re-
sponds in a manner similar to a van der Pol oscillator
when subject to external forcing.5

For reasons related to flow-induced vibrations, it
is frequently of interest to suppress the oscillation in
the cylinder wake. This effect can be achieved if the
instability can be controlled but requires feedback be-
cause of the non-linear nature of the oscillation. It also
requires a control input to the wake through, for exam-
ple, some motion of the cylinder. Below, we consider
briefly the wake response to forcing from the cylinder.

Wake Response to Forcing

The Karman vortex street induces an unsteady
transverse force at the cylinder, and under certain con-
ditions, when the cylinder is free to move, these forces
can lead to a resonance condition with large amplitude
cylinder oscillations. Where circular cylinders appear
in industrial applications, the oscillations can lead to
structural damage and structure failure.
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From a phenomenological perspective, the flow-
induced vibration is hydrodynamically the same as a
forced cylinder oscillation, and it is possible to under-
stand the wake dynamics by exploring the response
of the wake to excitations imposed by the cylinder.
There are many ways in which to introduce forcing
to the cylinder wake, and perhaps because the wake
is a relatively low-dimensional system, the responses
are quite similar regardless of the inputs.7 Trans-
verse translational motion of the cylinder is perhaps
the most common method of forcing, but acoustic,7,8

in-line motion9 and rotational forcing10–12 have also
been studied.

We can summarize some of the more general fea-
tures of the wake in response to forcing (see also Griffin
and Hall13). To start we note that at low Reynolds
numbers (Re = 100–200) the wake response does not
appear to depend on Reynolds number.7 Typically,
the wake of a circular cylinder contains vortices shed
with an oblique orientation relative to the cylinder
axis. The introduction of forcing increases the span-
wise coherence of the shedding and parallel vortices
ensue. Not unexpectedly, the wake is most receptive to
forcing at its natural shedding frequency or harmon-
ics thereof, and forcing at quite low levels produces
lock-on where the shedding assumes the frequency of
the forcing. A plot of the forcing amplitude ver-
sus the forcing frequency shows a V-shaped lock-on
regime with the apex at the natural shedding fre-
quency (see figure 3.10, Blevins14). This behavior is
characteristic of a van der Pol oscillator. The state
assumed by the wake will depend on the forcing fre-
quency and amplitude. Using acoustic excitation in
the mean flow direction (creating an effect similar to
in-line oscillation), Detemple-Laake and Eckelmann7

found twelve wake structures appearing in three fre-
quency regimes. The widest variety of structures were
found for a forcing frequency at one-half the natural
shedding frequency. Here, seven different structures
were observed including “sea-horse” shapes, vortex
twins (vortex pairs arranged symmetrically about the
wake centerline) and vortex triplets (where two vor-
tices are shed from one side of the cylinder). From
a modeling perspective, these different wake struc-
tures represent different (higher order) modes that
must be adequately represented in any model of the
wake. Three-dimensional effects are also present in
the wake even when the spanwise coherence is high,
and their impact on the wake cannot be neglected in
any model.15

The work to be described in this paper focusses
on one aspect, flow modeling, in the development of
a closed-loop control scheme for the cylinder wake.
Feedback control of the cylinder wake was first ac-
complished by Berger16 in 1967, and in recent years
has received renewed attention with varying degrees
of success. To provide perspective on the work to be

discussed later, we review some of this recent work.

Wake Control

In the last decade, there have been quite a few in-
vestigations using closed-loop, or feedback, control on
the low Reynolds number cylinder wake. Using feed-
back control with acoustic forcing, Roussopoulos17 was
able to suppress the wake instability at Reynolds num-
bers just above the onset of vortex shedding (Re=48).
A single sensor was used in the experiments, and the
instability was only suppressed in the vicinity of the
sensor. Away from the sensor location however, the
wake was largely unaffected by the control.

Park et al.18 computationally studied feedback con-
trol of the wake stability at Reynolds numbers of 60
and 80. A single sensor was used for feedback, and
the control input was blowing and suction through
slots located on the aft portion of the cylinder. They
demonstrated complete suppression of vortex shedding
at Re = 60, but at the higher Reynolds number, the
feedback control tended to excite a secondary mode at
a frequency lower than the natural shedding frequency.
They also observed that feedback control occurs for an
optimal location for the sensor in the wake.

Expanding on the earlier work of Roussopou-
los,17 Roussopoulos and Monkewitz15 used a two-
dimensional Ginzburg-Landau equation to study feed-
back control at Re = 47 with the three-dimensional
effects from along the span of the cylinder. A single
sensor was used for feedback. Their results confirm
that with a single sensor steady state suppression of
vortex shedding only occurs in the vicinity of the sen-
sor. For short times after the initiation of feedback
control, vortex shedding was suppressed over most of
the cylinder span, but end effects ultimately infect the
entire wake except near the sensor and vortex shedding
is reestablished.

Taking a cue from the limitations of the single-
sensor feedback control studies, Gillies19 developed a
multiple-sensor feedback technique to achieve shed-
ding suppression at a Reynolds number (Re=100)
where earlier single-sensor approaches had failed. The
rationale was that feedback control ultimately desta-
bilizes higher order modes and single-sensor feedback
cannot control all of the active modes. In this com-
putational approach, a low-dimensional model was de-
veloped using POD to identify the global modes. A
neural network was used to estimate the model coeffi-
cients from observations of the wake when subject to
forcing. It was also used to design the non-linear con-
troller. The control input was rotational oscillation of
the cylinder.

Graham et al.20 also used rotational oscillation to
effect feedback control of the cylinder wake at Re =
100. They developed a low-dimensional model from
Galerkin projection of the Navier-Stokes equations
onto POD modes obtained from numerical simula-

2 of 14

American Institute of Aeronautics and Astronautics Paper 2002–3066



tions. Optimal control theory was used in the model
control. While suppression of the wake unsteadiness
was achieved, the degree of suppression depended crit-
ically on the accuracy of the low-dimensional model.
Moreover, the control system was found to be more
complex than might be expected from inspection of the
unforced wake and due primarily to the destabilization
of higher order models when the wake was subjected
to control.

Theoretical Development
Following the lead of Gillies19 and Graham et al.,20

we take the approach that the wake can be represented
by a relatively low-dimensional model obtained from
the Navier-Stokes equations. The Galerkin method
with the proper orthogonal decomposition yields a
physics-based model of the wake and permits the in-
clusion of higher order modes that may be destabilized
during control. Below we briefly discuss how the model
is developed.

Galerkin Method

A low-dimensional model for the wake is obtained
from the Navier-Stokes equations using a Galerkin
method, see Fletcher.21 The global modes are ob-
tained empirically using the proper orthogonal decom-
position (POD). Velocity field measurements obtained
from the experiments are used in the POD to generate
the modes.

In the Galerkin approach, we do a Reynolds de-
composition of the velocity field, then expand the
fluctuating component in a series of time-dependent
coefficients, ak(t), and spatial modes, φk

i (x).

ui(x, t) =
∞∑

k=1

ak(t)φk
i (x)

The individual spatial modes represent the coherent
characteristic features of the fluctuating velocity field
and are obtained from the POD procedure. This
representation for the instantaneous velocity field is
then substituted into the Navier-Stokes equations for
the velocity fluctuation and projected onto the POD
modes. The result is a system of first-order, non-
linear differential equations for the temporal coeffi-
cients, ak(t).

dak

dt
= F (ak)

To obtain a simplified description of the flow-field,
we truncate the series representation for the fluctu-
ating velocity field at a number of modes expected to
faithfully reproduce the important flow dynamics and
obtain a reduced-order model of the cylinder wake.
This model can then be integrated in time, using say a
fourth-order Runge-Kutta scheme, to obtain the tem-
poral coefficients.

Proper Orthogonal Decomposition

In building a low-dimensional model of the cylin-
der wake with a Galerkin approach, one is confronted
with a decision for how to choose a characteristic set of
global modes with which to expand the velocity field.
In this work, we use the proper orthogonal decom-
position (POD) to identify the global modes in the
cylinder wake. The approach is empirical in that it
uses experimentally obtained velocity realizations of
the wake, but is an optimal approach in that it will
capture more kinetic energy in the fewer modes than
any other decomposition of the flow. A more detailed
discussion of this approach can be found in Holmes et
al.22

To summarize the POD-based approach, we are in-
terested in obtaining a set of modes for which the
average projection of the velocity field onto the modes
obtains the largest value. This maximization task
leads to a calculus of variations problem involving the
integral equation

∫
K(x,x′)φ(x′)dx′ = λφ(x)

where K is the spatial velocity correlation tensor,
〈ui(x)uj(x′)〉, λ are the eigenvalues and φ are the
eigenfunctions.

In the current work, we used the Method of Snap-
shots developed by Sirovich.23 This approach starts
with a collection of velocity field realizations obtained
experimentally

un(x) = u(x, nτ)

where u are the velocity fluctuations and are uncor-
related for different values of n. Using the ergodic
hypothesis, the spatial velocity correlation tensor may
be constructed as follows

K(x,x′) =
1
M

M∑
n=1

un(x) [un(x′)]T

where [un(x′)]T is the transpose of un(x′) and for each
x and x′, K is the 3 × 3 velocity correlation matrix,
given sufficiently large M.

Now K will have eigenfunctions of the form

φi(x) =
N∑

k=1

Akuk(x)

Introducing K and φi into the integral equation, one
obtains

CnkAk = λAn

where

Cnk =
1
M

∫
[un(x′)]Tuk(x′) dx′ k = 1, 2, 3, ..., M
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Fig. 1 Photograph of the water channel facility
and circular cylinder model.

Note that each entry of Cnk is a scalar resulting from
the spatial integration over all points in the pair of
snapshots n, k.

The solution of the eigenvalue problem and the sub-
sequent reconstruction procedure for φn

i (x) provides a
hierarchy of characteristic spatial representations for
the velocity fluctuations. This approach is particu-
larly well-suited to PIV measurements where a finite
set of velocity realizations are available rather than the
velocity correlation tensor.

Experimental Measurements
The basis for the modeling of the cylinder wake is

experimentally obtained velocity measurements in the
wake. Here, we discuss the experimental setup, the
test conditions and the data acquisition procedures.
We then consider the effect of open-loop forcing on
the structure of the wake by examining several repre-
sentative forcing cases.

Experimental Setup

The experimental measurements were obtained in
the USAFA Aeronautics Laboratory recirculating wa-
ter channel. The cross section of the water channel
was 38 cm by 38 cm (see figure 1), and the test section
was 1.5 m in length.

The circular cylinder model was a stainless steel rod
measuring 2.38 mm in diameter and 42 cm in length.
To permit the cylinder to rotate about its longitudi-
nal axis, the cylinder was mounted in two ball-bearing
supports that were located on opposite sides of a rigid
frame (Figure 1). The cylinder and frame were posi-
tioned vertically in the water channel, 30 cm down-
stream of the entrance to the test section; the frame
fit flush against the channel sidewalls and bottom. A

Sf Ω1 daq Sf Ω1 daq
0.189 0.2 A 0.248 0.2 A
0.189 0.4 A 0.248 0.4 A
0.189 0.5 A, P 0.248 0.6 A
0.189 0.6 A 0.248 1.0 A
0.189 0.65 A 0.248 1.05 A
0.189 0.7 A 0.248 1.1 A
0.189 0.75 A 0.248 1.15 A
0.189 0.8 A 0.248 1.2 A
0.189 0.85 A 0.248 1.25 A
0.189 0.9 A 0.248 1.3 A
0.189 0.95 A 0.248 1.35 A
0.189 1.0 A 0.248 1.4 A
0.189 1.2 A 0.248 1.8 A
0.189 1.4 A 0.248 2.0 A
0.189 1.5 A, P 0.248 2.4 A

Table 1 Test Conditions. A, asynchronous; P,
phase-locked.

servo-motor with encoder feedback was used to effect
the rotational motion.

For all measurements, the freestream velocity was
6.0 cm/s. The cylinder Reynolds number based on
the diameter was 125. The natural shedding frequency
of the cylinder was estimated from the Strouhal num-
ber (Sf ≡ fD/U∞) at a Reynolds number of 125 and
assuming parallel shedding.24 At this Reynolds num-
ber, the Strouhal number was estimated to be 0.177
yielding a shedding frequency of approximately 4.46
hz. A spectral analysis of the temporal coefficients in
the Galerkin projection revealed a shedding frequency
of 4.57 hz.

In the current set of experiments, the control input
was an oscillatory rotational motion about the longitu-
dinal axis of the cylinder. The amplitude of the motion
was characterized using the peak linear velocity of the
cylinder surface.11

vθ = vθ,max sin 2πft

The peak velocity was non-dimensionalized by the
freestream velocity yielding Ω1 ≡ vθ,max/U∞. In this
study, we considered values of Ω1 in the range

0.2 ≤ Ω1 ≤ 2.4

at two forcing frequencies. The forcing frequencies
were 4.762 Hz, which was slightly higher than the
Karman frequency due to the resolution of the mo-
tion control hardware, and 6.25 hz. These frequencies
correspond to Strouhal numbers of 0.189 and 0.248,
respectively. A listing of the forcing frequencies and
amplitudes is shown in Table 1.

Using digital particle image velocimetry, two-
dimensional velocity field measurements were obtained
in the wake of the cylinder. The field of view extended
from the trailing edge of the cylinder to approximately
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eight cylinder diameters (8D) downstream. In all fig-
ures shown below the trailing edge of the cylinder is
located at x/D = 0 and y/D = 3.8. In physical coor-
dinates, the field of view was a 18.6 mm square. The
PIV system employed a 1 Mpixel array camera. A
32× 32 pixel interrogation area with 50% overlap was
used in the data reduction. Each vector map was post-
processed using a two-step sequence: first, a validation
routine examined a 5× 5 vector area and replaced re-
jected vectors with an averaged estimate; second, an
averaging filter was applied to each 5 × 5 vector area
to reduce noise.

The experimental data was acquired at 15 hz and
asynchronously with respect to the forcing. For each
case, 128 snapshots were acquired. To recreate an
approximate picture of the wake during one forcing pe-
riod, a reorganization of the snapshots was performed.
This approach exploits the fact that the wake locks on
to the forcing, and consequently it is possible to know
when each snapshot was obtained during the forcing
cycle relative to the first snapshot in the ensemble.

Open-loop Control Results

To provide a sense for how the rotational forcing
modifies the cylinder wake, we consider a range of cases
where the forcing was applied in open-loop at both
forcing frequencies.

The effect of forcing amplitude near the Karman fre-
quency is shown qualitatively in figure 2. Contours of
the cross-span vorticity, ωz, are shown for the unforced
and four forcing cases (Ω1 = 0.2, 0.6, 0.9 and 1.5). The
unforced and Ω1 = 0.2 cases appear very similar. With
a low forcing amplitude, the forcing locks in the shed-
ding at the forcing frequency but the character of the
vortex street is largely unchanged from the unforced
case. As the forcing amplitude increases, a gradual
change in the wake structure is apparent. The vor-
tices are displaced increasingly farther away from the
wake centerline with increasing forcing amplitude. Ul-
timately, it appears that the shear layers originating
from the top and bottom surfaces of the cylinder re-
main distinct. This structure resembles qualitatively
the ‘sea-horse’ structure observed by Detemple-Laake
and Eckelmann.7

Similar qualitative results were observed when forc-
ing at Sf = 0.248 (see figure 3). Yet, a sequence of
reordered snapshots showing lock-on in the near wake
for Ω1 = 1.1 revealed that the two shear layers appear
to interact near the end of the measurement domain to
initiate the formation of, what appears to be, a Kar-
man vortex street. Interestingly, this vortex street did
not appear to be synchronized with the forcing. A sim-
ple conclusion drawn from these observations is that
as Ω1 increases, the formation length for the Karman
street increases.

A mean velocity field can be obtained by averaging
over the entire ensemble of velocity field snapshots for
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Fig. 2 Contours of the cross-span vorticity, ωz, in
the wake of the cylinder for five forcing amplitudes
at Sf = 0.189: Ω1 = 0, 0.2, 0.6, 0.9, 1.4.
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Fig. 3 Contours of the cross-span vorticity, ωz, in
the wake of the cylinder for four forcing amplitudes
at Sf = 0.248: Ω1 = 0.4, 1.1, 2.4.
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Fig. 4 Contours of the mean streamwise velocity
for the unforced wake and the wake with Ω1 = 1.5
at Sf = 0.189.

a given forcing condition. These mean velocity fields
reveal a dramatic increase in the length of the mean
recirculation zone as the forcing amplitude increases.
Figure 4 compares contours of the mean streamwise
velocity for the unforced and Ω1 = 1.5 at Sf = 0.189
cases. For the forced case, a region of significantly
reduced velocity extends far downstream; in fact, it ex-
tends beyond the end of the measurement domain, or
over eight diameters downstream of the cylinder trail-
ing edge. Mean streamwise velocity contours at Sf =
0.248 reveal a similar mean wake at Ω1 = 1.2; however,
at higher forcing amplitudes (Ω1 = 2.4), the low ve-
locity region decreases in streamwise extent (figure 5).
Taneda25 shows that at yet higher forcing amplitudes
(Ω1 ≈ 12.5) it is possible to close the recirculation
region completely.

To summarize the effects of rotational forcing on
the cylinder wake at a fixed Strouhal number and
with increasing forcing amplitude. We observed that
the Karman vortex street appears to undergo a grad-
ual transition from vortices of alternating sign aligned
along the wake centerline to a pattern of similar vor-
tices displaced above and below the wake centerline.
This transition is observed at both forcing frequencies.
Initially, as the forcing amplitude increases, the length
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Fig. 5 Contours of the mean streamwise velocity
for two forcing cases at Sf = 0.248, Ω1 = 1.2, 2.4

of the mean recirculation region in the wake increases
in streamwise extent. However, at the highest forcing
amplitudes investigated, we observed that this region
must reach at maximum at a critical value of Ω1 and
then decrease. At Sf = 0.248, the critical value of Ω1

is near 1.2. At Sf = 0.189, the value is greater than
1.5. One can infer from this latter observation that the
drag coefficient may first increase with forcing ampli-
tude, achieve a maximum then decrease with further
increases in forcing amplitude.

As mentioned above, the main focus of this work
was the development of a low-dimensional model that
can accurately predictive the wake dynamics with and
without the rotational forcing. The following sections
address this work in detail.

Wake Flow Analysis
To develop the low-dimensional model of the wake,

we consider in turn the POD analysis of the wake,
the Galerkin projection, from which we obtain wake
models, and then the predictive quality of the models.
We conclude by considering an approach for obtaining
a broader set of global modes for the wake.

POD Modes

A POD analysis was performed on each data set,
and the mode sets were compared to highlight the
similarities and differences that appear in the wake
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structure as a result of the forcing.
For each forcing case, the number of modes that

may contribute significantly to the overall dynamics
of the wake was evaluated by considering the eigen-
value spectra. The eigenvalues give a measure of the
contribution each mode makes to the total fluctuating
kinetic energy. Figure 6 shows the eigenvalues for the
first 20 modes in the unforced and three forcing cases
(Ω1 = 0.2, 0.9, 1.5) at Sf = 0.189. In the unforced
case, the first six modes capture 90% of the fluctuat-
ing energy. If a low level of forcing (Ω1 = 0.2) is added
to the wake, the first two modes capture 95% of the
flow energy. That is, the low amplitude forcing locks
the wake into a more coherent flow state, captured
with fewer modes. Increasing the forcing amplitude
to Ω1 = 0.9 distributes the flow energy over a larger
number of modes, but further increases from there ap-
pear again to lock-in a coherent flow state that is less
dynamically complex.

The eigenvalues can also be used to estimate the di-
mensionality of the flow. For example, increasing the
forcing amplitude from Ω1 = 0.2 to 0.9, increases the
number of modes that contain 90% of the kinetic en-
ergy from two to eighteen (figure 6). This observation
reveals that the complexity of the flow at the higher
amplitude forcing condition is quite a bit greater than
at the lower forcing condition, and consequently, a
higher dimensional model will be required to capture
the wake dynamics accurately.

Figure 7 shows the fraction of the kinetic energy in
the wake modes for cases with forcing at Sf = 0.248.
Four forcing amplitudes (Ω1 = 0.4, 1.1, 1.4, 2.4) are
compared with the unforced case. A behavior similar
to the Sf = 0.189 case is observed, particularly in the
way that the complexity of the wake increases as the
forcing amplitude increases. For example, as the am-
plitude of the forcing is increased from 0.4 to 1.4, the
wake kinetic energy is increasingly spread over a larger
number of modes. However, as the forcing amplitude
continues to increase beyond 1.4, a more coherent state
is locked-in, and the dimensionality of the wake is re-
duced. In general though, the wake appears to be more
complex at this forcing Strouhal number than for forc-
ing near the natural Strouhal number.

The eigenfunctions obtained from the POD analy-
sis are two-dimensional vector fields. In the following
discussion, we present vorticity eigenfunctions for the
first four modes.

Figures 8–11 show the eigenfunctions for the un-
forced and three forcing cases at Sf = 0.189. For
all cases, the modes appear in similar pairs with each
member in a pair spatially shifted relative to the other.
The unforced and Ω1 = 0.2 case exhibit very similar
mode shapes. The modes for the forced case are, per-
haps, more distinct as might be expected from the
eigenvalue spectra (figure 6). Recall from the raw
vorticity snapshots of the wake for different forcing
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Fig. 6 A comparison of the kinetic energy con-
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Fig. 7 A comparison of the kinetic energy con-
tained in the first 20 modes for the cases with
forcing at Sf = 0.248: Ω1 = 0, 0.4, 1.1, 1.4, 2.4.

conditions (figure 2), the wake appears to undergo a
gradual transformation as Ω1 increases. At this value
of Sf , this apparent gradual change is manifested in
a relatively abrupt change in the mode shapes near
Ω1 = 0.9. Near this value of Ω1, the two most dom-
inant modes at the low forcing amplitude (see figure
9) disappear with two new modes appearing (see fig-
ure 10). At Ω1 = 0.9, modes 3 and 4 are indistinct
while higher modes (not shown) do appear distinct.
Near this forcing amplitude boundary, mode switch-
ing takes place in the wake with the Karman vortex
street becoming subordinate to a new shedding state.
At Ω1 = 1.5, the new shedding state has become ener-
getically dominant and the new wake modes distinct.
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Fig. 8 Contours of the cross-span vorticity, ωz, for
the first four modes of the unforced wake.

x / D

y
/D

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9
-1

Mode 1
ωz

x / D

y
/D

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Mode 2

x / D

y
/D

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4
-1.6
-1.8

Mode 3
ωz

x / D

y
/D

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Mode 4

Fig. 9 Contours of the cross-span vorticity, ωz, for
the first four modes at Ω1 = 0.2 and Sf = 0.189.

We note that each mode pair exhibits a distinct sym-
metry with respect to the wake centerline. For the
unforced and low amplitude forcing cases, the first two
modes are symmetric with respect to the wake center-
line while the next higher modes are asymmetrically
arranged. At higher forcing amplitudes, a new symme-
try is observed in modes 1 and 2, but the asymmetry
in modes 3 and 4 appears unchanged. In addition, the
wavelength of the modes has decreased by a factor of
two.

The first four eigenfunctions for forcing at Sf =
0.248 and Ω1 = 0.4, 1.1, 2.4 are shown in figures 12–
14. Qualitatively the mode shapes are similar to those
found at Sf = 0.189. The first two modes at Ω1 = 0.4
(figure 12) are similar to the first two modes in the un-
forced wake (figure 8). The next two modes, however,
are quite distinct from modes 3 and 4 in the unforced
case, suggesting that the locked-in wake at a higher

x / D

y
/D

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9
-1

Mode 1
ωz

x / D

y
/D

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Mode 2

x / D

y
/D

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4
-1.6
-1.8

Mode 3
ωz

x / D

y
/D

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Mode 4

Fig. 10 Contours of the cross-span vorticity, ωz,
for the first four modes at Ω1 = 0.9 and Sf = 0.189.
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Fig. 11 Contours of the cross-span vorticity, ωz,
for the first four modes at Ω1 = 1.5 and Sf = 0.189.

Strouhal number is structurally different to the un-
forced wake despite qualitative similarity in the overall
wake vorticity distribution. We again observe a tran-
sition in the hierarchy of wake modes near a critical
value of Ω1. At Sf = 0.248, the critical value is slightly
higher, 1.1, than the value at the lower Strouhal num-
ber, 0.9. Beyond Ω1 = 1.1 when the new wake state
is coherently locked-in, the first four modes are essen-
tially identical to those observed at the lower Strouhal
number. However, a shorter wavelength is observed
due to the higher frequency.

From inspection of the wake modes, we can infer
that the wake structure is dynamically similar at two
different forcing Strouhal numbers. The transition
from the modes yielding the Karman vortex street
to modes giving the asymmetric vortex street occurs
near the non-dimensional forcing amplitude Ω1 = 1.0
at both Strouhal numbers. These observations sug-
gest that we should be able to construct a single
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Fig. 12 Contours of the cross-span vorticity, ωz,
for the first four modes at Ω1 = 0.4 and Sf = 0.248.
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Fig. 13 Contours of the cross-span vorticity, ωz,
for the first four modes at Ω1 = 1.1 and Sf = 0.248.
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Fig. 14 Contours of the cross-span vorticity, ωz,
for the first four modes at Ω1 = 2.4 and Sf = 0.248.

low-dimensional model capable of capturing the wake
dynamics over a range of forcing amplitudes and fre-
quencies.

Galerkin Projection

A low-dimensional model of the wake was ob-
tained using the Galerkin method described above.
The eigenfunctions, obtained from the POD analy-
sis, form the basis for the projection of the Navier-
Stokes equations. For the open-loop control cases, a
low-dimensional model was obtained for each forcing
amplitude, and the predictions from the model were
compared with the experimental measurements. Be-
low we compare the predicted temporal coefficients
with the temporal coefficients obtained from projec-
tions of the experimental measurements onto the POD
modes at the same phase in the wake shedding cycle.
Reconstructions of the temporal evolution of the wake
were also made. To begin the discussion, we briefly
show the general form of the low-dimensional model.

The projection of the Navier-Stokes equations onto
the POD modes yields a system of first-order, non-
linear differential equations for the temporal coeffi-
cients, ak(t). The general form of this system is shown
below.

dak

dt
= −(Bkn − νDkn)an − Cknm(anam − δnmanam)

where

Bkn =
(

φk
i , 〈Uj〉∂φn

i

∂xj
+ φn

j

∂〈Ui〉
∂xj

)

Cknm =
(

φk
i , φn

j

∂φm
i

∂xj

)

Dkn =

(
φk

i ,
∂φn

i

∂x2
j

)

The parentheses ( ) indicate a suitably defined inner
product, and we note that the coefficient matrices are
constant for a given forcing condition.

This first-order system was truncated at a relatively
low order. In this study, we considered models of order
four to sixteen. No attempt was made to model the
flow energy lost due to the truncation procedure. We
justify this approach a posteriori. The truncated sys-
tem was integrated using a fourth-order Runge-Kutta
routine, and the solutions were found to be indepen-
dent of the time step.

Figure 15 shows the temporal coefficients, ak, pre-
dicted by the low-dimensional models for two periods
of the wake oscillation. The unforced wake and the
forced wake for three forcing amplitudes (Ω1 = 0, 0.2,
0.9, 1.5) at Sf = 0.189 are shown. A four mode model
was used all cases except the Ω1 = 0.9 case where, due
to the complexity of the wake, a sixteen mode model
was employed. The experimental data shown in these
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figures was reordered for comparison with the model
predictions. To reorder the unforced data, we used an
spectral analysis to estimate the shedding frequency
and found it to be 4.57 hz (Sf = 0.181).

For the unforced wake, the noise in the projections
of the experimental data makes a comparison some-
what difficult. Nevertheless, we observe that the model
prediction is quite accurate in phase and amplitude.
With low amplitude forcing (Ω1 = 0.2), the four mode
model shows a lightly damped oscillation in the first
two temporal coefficients, and the agreement with the
experimental data gets worse near the end of the sec-
ond oscillation. This result is somewhat surprising, as
the POD analysis of the Ω1 = 0.2 case revealed a very
compact wake structure with over 95% of the wake
energy in the first four modes. In subsequent evalua-
tions (not shown here), a two mode model gave slightly
better agreement with little to no damping but with
a slight shift in phase. The model predictions for the
Ω1 = 0.9 case show the best agreement with the exper-
imental data. This result is perhaps surprising, as this
forcing amplitude is near the transition in the wake
structure. Because the structure of the wake at this
forcing amplitude is more complex, a higher dimen-
sional model was required. Our initial predictions with
lower dimensional models showed significant phase lag
and poor agreement with amplitude. Finally, for the
Ω1 = 1.5 case, we observe a phase lag in the model pre-
dictions leading to a lower predicted frequency for the
wake oscillation. The predicted amplitude is damped
slightly, but not as much as for the Ω1 = 0.2 case.

Figures 16–17 evaluate the reconstructions of the
wake for two of the forcing cases (Ω1 = 0.2, 0.9)
at Sf = 0.189. In these figures, we show four re-
constructed snapshots from one forcing cycle for a
qualitative evaluation; we also show a quantitative
measure derived from the projection of a reconstructed
image onto a raw snapshot at the same time in the
forcing cycle. The order of the low-dimensional mod-
els is the same as shown in figure 15. Early in the
forcing period at Ω1 = 0.2, the reconstructed wake
appears qualitatively to match well with the experi-
mental observations (figure 2). However at t/T = 0.75,
the wake vortices appear to become distorted suggest-
ing a non-physical behavior. The correlation of the
reconstruction with the original wake decreases mono-
tonically with time, but is due in large part to the
shift in the relative phase of the two wakes. In this
case, a two mode model gave a better comparison to
the original wake, indicating that the distortion in the
four mode model was due to the higher order modes.
For Ω1 = 0.9, the qualitative comparison again is good
with a similar monotonic decrease in the correlation.
These comparisons suggest that the low-dimensional
models can faithfully capture the wake dynamics for
short time periods.
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Fig. 15 Comparisons of the first two temporal co-
efficients from the low-dimensional models with the
experimental data. Solid lines are low-dimensional
model; symbols are projections of experimental
data. Sf = 0.189. Ω1 = 0.0, 0.2, 1.5, four mode
models; Ω1 =0.9, sixteen mode model.
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Fig. 16 The reconstructed wake from a 4 mode
model for Ω1 = 0.2 and Sf = 0.189. Top figure shows
a sequence of four reconstructed snapshots. Bot-
tom figure shows a measure of the overall difference
between the reconstructed flow and the original
flow.

Data Stacking

In a flow where the control input may change the
structure of the flow and create a higher dimensional
system, or simply change the dominant modes, a set
of modes that spans the flow through all of the control
inputs is desired. This set of modes can be obtained
by using an ensemble of snapshot groups where each
member of the ensemble was obtained for a different
value of the control input (see for example Smith and
Holmes26).

The open-loop control cases discussed above re-
vealed that the wake undergoes a transition from Kar-
man shedding to an asymmetric shedding pattern near
Ω1 = 1.0. At this critical value, the primary modes in
the wake change, and the wake becomes more complex.
After the transition, the forcing locks-in a new wake
state with a different set of modes, and the dimension-
ality of the wake once again becomes low. To capture
both types of wakes, a set of global modes must span
both states.

A stacked dataset analysis was undertaken using
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Fig. 17 The reconstructed wake from a 16 mode
model for Ω1 = 0.9 and Sf = 0.189. Top figure shows
a sequence of four reconstructed snapshots. Bot-
tom figure shows a measure of the overall difference
between the reconstructed flow and the original
flow.

snapshots from seven forcing amplitudes, Ω1 = 0.2,
0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 at Sf = 0.189. The result-
ing general set of POD modes was then used to form
a low-dimensional model for two of the forcing cases,
0.2 and 1.4. These two cases possess distinctly differ-
ent wake structures and hence provide a critical test of
the general applicability of the mode set. Note that the
model coefficients were evaluated using the mean flow
obtained from the specific forcing case. To evaluate
the quality of these new models, we make three com-
parisons. The first comparison is with the projections
of the raw velocity snapshots onto the stacked POD
modes; the second comparison is with the predictions
from a low-dimensional model obtained using modes
from only the forced case; and the third comparison
shows the correlation between the reconstructions for
each case with the original snapshots. For each case
shown, we have chosen the model that shows the best
agreement with the experimental data, thus gaining
a measure of the veracity of the models as well as the
level of sophistication required to achieve it. The com-
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parisons are shown in figures 18 and 19.
For Ω1 = 0.2 (figure 18), we show four mode models.

The phase accuracy of the two models is comparable,
but the stacked mode model appears to give a better
prediction of the amplitude. Moreover, the stacked
mode model retains a higher level of correlation with
the original data for a longer time.

For Ω1 = 1.4 (figure 19), we compare an eighteen
stacked mode model to a four mode model from the
single forcing case. Both models provide good pre-
dictions for the first one and a half cycles but then
appear to diverge from the experimental data. For the
stacked mode model, both the phase and amplitude
diverge while for the single forcing case model, only
the phase appears to losing coherence. In comparing
the correlations for the reconstruction and the origi-
nal wake, we find that the higher dimensional model
required in the stacked case to accurately predict the
first couple of temporal coefficients ultimately leads to
a poor correlation at later times in the reconstructed
wake.

Conclusions
A set of experimental measurements in the wake of a

circular cylinder undergoing low-amplitude rotational
oscillations were obtained. Two forcing Strouhal num-
bers were considered, and the wake response to an
increase in the forcing amplitude was similar at both
Strouhal numbers. A transition in the wake structure
was observed near Ω1 = 1: the Karman vortex street
was replaced with an asymmetric, off-centerline vortex
pattern. In addition, the recirculation region imme-
diately behind the cylinder grew dramatically in the
streamwise direction.

Using the experimental measurements, a low-
dimensional model of the wake was obtained for each
of the forcing cases considered. In each case, models
of the order of four were able to qualitatively cap-
ture the vortex dynamics in the wake. In addition,
a stacked dataset analysis was considered in an ef-
fort to identify a general set of wake modes for the
low-dimensional model derivation. At low forcing am-
plitudes, the model obtained from the stacked modes
worked as well as the model obtained using modes from
the single forcing case. At higher forcing amplitudes, a
higher dimensional model was required to obtain com-
parable accuracy.

For the future, we will be undertaking measure-
ments in the cylinder wake that capture transients
resulting from impulsive forcing input. We will also
be working to complete the development of a low-
dimensional model formulation containing a control
function input. And finally, the work of Roussopou-
los and Monkewitz15 clearly shows the importance of
three-dimensional effects along the span and the impli-
cations of neglecting these effects in a low-dimensional
model. We will be considering the development of
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Fig. 18 Comparisons of models for the single forc-
ing case and the stacked mode case, Ω1 = 0.2 and
Sf = 0.189. Both models use 4 modes. First two fig-
ures show the first two temporal coefficients for the
single forcing case and the stacked mode case. The
bottom figure shows the correlation to the original
wake for reconstructed wakes from each case.
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Fig. 19 Comparisons of models for the single forc-
ing case (4 modes) and the stacked mode case (18
modes), Ω1 = 1.4 and Sf = 0.189. First two figures
show the first two temporal coefficients for the sin-
gle forcing case and the stacked mode case. The
bottom figure shows the correlation to the original
wake for reconstructed wakes from each case.

a hybrid low-dimensional model wherein the span-
wise effects are taken into account perhaps through
an adaptation from the Ginzburg-Landau equation.
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