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A short computational program was undertaken to evaluate the effectiveness of a closed-loop control 
strategy for the stabilization of an unstable bluff-body flow. In this effort, the nonlinear one-dimensional Ginzburg-
Landau wake model at 20% above the critical Reynolds number was studied. The numerical model, which is a 
nonlinear partial differential equation with complex coefficients, was solved using the FEMLAB/MATLAB 
package and validated by comparison with published literature. Based on computationally generated data obtained 
from solving the unforced wake, a low-dimensional model of the wake was developed and evaluated. The low-
dimensional model of the unforced Ginzburg-Landau equation captures more than 99.8% of the kinetic energy using 
just two modes. Two sensors, placed in the absolutely unstable region of the wake, are used for real-time estimation 
of the first two modes. The estimator was developed using the linear stochastic estimation scheme. Finally, the loop 
is closed using an PID controller that provides the command input to the variable boundary conditions of the model. 
This method is relatively simple and easy to implement in a real-time scenario. The control approach, applied to the 
300 node FEMLAB model at 20% above the unforced critical Reynolds number stabilizes the entire wake for a 
proportional gain of 0.06. While the controller uses only the estimated temporal amplitude of the first mode of 
Im(A(x,t)), all higher modes are stabilized. This suggests that the higher order modes are caused by a secondary 
instability that is suppressed once the primary instability is controlled.  

 
  

Nomenclature 
 

A(x,t) Complex amplitude of the Ginzburg-Landau model 
Cij Coefficients of the linear stochastic estimator 

cn, cd Complex coefficients of the Ginzburg-Landau model 
F(x,t) External forcing in the Ginzburg-Landau model  
Gs(t) Time-Varying gains 
KP Proportional gain of the controller 

N(t) Noise parameter in the Ginzburg-Landau model 
Re Reynolds number 
U Advection speed 
x Spatial coordinate 
zi Temporal mode amplitude of POD model 
δ Dirac delta function 

µ(x) Wake growth rate parameter 
µcrit Value where the self-excited oscillations begin 
µ0 Analogue of wake Reynolds number. Also referred to in text as “Reynolds number” 
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Introduction 
 
The phenomenon of vortex shedding behind bluff 

bodies has been a subject of extensive research. Many 
flows of engineering interest produce the phenomenon 
of vortex shedding and the associated chaotic response. 
Applications include aircraft and missile aerodynamics, 
marine structures, underwater acoustics, and civil and 
wind engineering. The ability to control the wake of a 
bluff body could be used to reduce drag, increase 
mixing and heat transfer, and enhance combustion. 
Flows with absolute instabilities behind bluff bodies, an 
archetype of which is the cylinder wake, demonstrate 
self-excited oscillations even when all sources of noise 
are removed1. Above a critical Reynolds number (Re ~ 
47), nondimensionalized with respect to freestream 
speed and cylinder diameter, in the wake of a two-
dimensional (2D) cylinder, a significant region of local 
absolute instability occurs which results in a global 
flow instability, known as the von Karman vortex 
street.  

 
The complex Ginzburg-Landau (GL) equation, 

with suitable coefficients, models well the absolute 
instability of bluff-body wakes. The one-dimensional 
(1D) GL equations provide useful insight for the 
description of global modes for purely 2D shedding 
where the spatial coordinate in the GL equation 
coincides with the streamwise direction2. The 1D GL 
equation, which is derivable from the Navier-Stokes 
equations, can be modeled to contain all of the stability 
features of the 2D cylinder wake pertinent to control. 
Furthermore, the GL model is frequently used in the 
literature for wake control studies and has been shown 
to allow semi-qualitative predictions of the wake with 
feedback3-5. An attractive characteristic of the GL 
model is that it is relatively straightforward to integrate 
numerically, making it an effective tool for 
investigating prototypes of control strategies.  

 
Cylinder wake flows, represented by the GL 

model, are dominated by the dynamics of a relatively 
small number of characteristic large-scale spatial 
structures, as observed in experimental results for 
periodically forced vortex streets. The GL model is a 
set of complex, non-linear partial differential equations 
using numerical finite element or difference schemes. A 
control model based on these equations is therefore not 
feasible for real time estimation and control. A 
desirable controller will on the one hand simply 
measure and control a finite number of large-scale 
spatial structures. On the other hand, it will keep the 
number of modes of the wake flow low by not exciting 
it into a higher dimensional state. 

 

If the complex spatio-temporal information is 
characterized by a relatively small number of quantities, 
then feedback may be computationally feasible. 
Therefore, to obtain a controller that can be 
implemented, a reduced-order model is sought to 
represent the characteristic features of the flow field.  

 
A common method used to reduce the model-

order is proper orthogonal decomposition, commonly 
known as POD. The POD method may be used to 
identify the characteristic features, or modes, of a 
cylinder wake as demonstrated by Gillies1. This method 
is an optimal approach in that it will capture a larger 
amount of the flow energy with fewer modes than any 
other decomposition of the flow6. Low-dimensional 
modeling, based on POD techniques, is a vital building 
block when it comes to realizing a structured model-
based closed-loop strategy for flow control. The major 
building blocks of this structured approach are 
comprised of a reduced order POD model, a state 
estimator and a controller. A truth model, based on 
numerical techniques, is required for computational 
simulations to verify the effectiveness of the developed 
approach. Finally, wind/water tunnel experimentation 
would be required for experimental demonstration. 

 
 In his investigations of active control schemes 

for stabilizing the Ginzburg-Landau wake, Gillies3,4 

showed that a proportional control strategy using a 
single sensor can successfully control the flow at no 
more than 5% above criticality. However, a 
proportional controller based on two sensors extends 
the envelope to 12% above criticality. At this point, 
Gillies suggested that more sensors be introduced for 
feedback purposes for a further extension of the 
criticality envelope. In this effort, a low-dimensional 
POD model is sought to control the wake of the 
Ginzburg-Landau model studied by Gillies3,4 and Park, 
Ladd and Hendricks5. The introduction of a POD model 
provides a more effective method of controlling the 
Ginzburg-Landau wake based on two sensors. The 
paper is organized as follows: The next section 
describes the research objective and uniqueness of the 
developed approach. The Ginzburg-Landau equation is 
presented in the following section and the FEMLAB 
model is described subsequently. Then, the open-loop 
low-dimensional POD model is presented, followed by 
the development of the estimation and controller 
schemes. A comparison of the results between the 
closed-loop simulations to that in literature is made in 
the penultimate section, and the conclusions to date of 
this research effort are summarized in final section. 
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Research Objective 
 
Recent research on closed-loop control of the 

Ginzburg-Landau model using a simple proportional 
fixed gain approach includes work by Park, Ladd and 
Hendricks5, Roussopoulos and Monkewitz2 and 
Gillies3,4. The closed-loop results, obtained using the 
proportional fixed gain method based on feedback from 
one or two sensors, provide only limited improvement 
concerning the extension of the ‘vortex shedding’ 
criticality. Gillies4 recommended the introduction of 
multiple sensors for a further extension of criticality.  

 
The main objective of this research effort is to 

develop an effective estimation and control scheme for 
closed-loop suppression of the Ginzburg-Landau model 
of the von Karman vortex street. The developed 
strategy would aim at extending criticality without 
necessarily having to increase the number of sensors 
above two. Furthermore, the estimator would be 
designed to adapt to changes in Reynolds Number for a 
fixed set of sensor placement and number.  

 
 

The Ginzburg-Landau Wake Model 
 

 The 1D Ginzburg-Landau (GL) equation 
chosen is based on Gillies (2000) as follows: 

 
                                                                                  

(1) 
                                           • 1D domain 0 < x < 120 

 
where A(x,t) is the complex amplitude and U, cd, cn and 
µ(x) are real. F(x,t) incorporates the effects of feedback 
actuation and noise. The stability of the GL “wake” is 
defined by the growth parameter 

                                                                     (2) µ+µ=µ
              
where µo is similar to a Reynolds number based on the 
cylinder diameter. For µ’< 0 the stability features of this 
“prototype” wake are similar to the stability features of 
a 2D cylinder wake; i.e. a self-excited unstable response 
emerges followed by a limit cycle (see Fig. 1). 
 

For the flow around cylinders, several forcing 
techniques affect the behavior of the flow; however, the 
wake response to forcing is similar for each, whether 
translation of the cylinder in the direction parallel to or 
perpendicular to the mean flow, rotation of the cylinder 
or alternate blowing and suction at the separation 
points3. Controlled forcing of the wake will be 
introduced into the GL equation by an actuation 
function placed in the near wake, namely F(x,t), using 
simple delta functions. The actuator will provide a step 

perturbation to the complex amplitude over the spatial 
actuation range: 0 < xa < 2.0. 

 
The effects of feedback and noise may be 

incorporated into the GL equation in two ways. The 
first method, suggested by Roussopoulos and 
Monkewitz (1996) and Gillies (2000), involves 
modeling of the actuator as a delta function that 
provides forcing at a fixed spatial location, xa, and a 
delta function that provides sensing at a sensor location, 
xs, as shown in Equation (3):  

 t
                            

(3)       
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The signals from n sensors are fed back with time-
varying gains Gs(t). The second term, N(t), describes 
the noise added to the system. Noise may be modeled 
with a random number generator of adjustable 
amplitude.  An alternative method for incorporating 
feedback and noise, utilized in this study, was proposed 
by Park, Ladd and Hendricks (1993). This approach 
involves the modeling of an active boundary condition 
at x = 0 for the Ginzburg-Landau equation as follows: 

  
                  A(0, t) = α(t)A(xs,t)                            (4) 
 
where α (t) may be time-invariant as in the case of 

Park, Ladd and Hendricks (1993) and Gillies (2000) or 
it may be a variable gain. The current effort is based on 
Gillies’ (2000) model to enable comparison: )t,x(FAA)jc1(
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• Boundary conditions: A(0,t) =  0 (which 
simulates the cylinder body),  A(120,t) = 0 

• Fixed Parameters: U = 5; µ’= -0.0434; cd = 1; 
cn = 0. 

 
 x')x( o

Computational Model 
 
 After writing the GL equation, which is a non-
linear partial differential equation with complex 
coefficients, the next step is to solve it numerically.  
After a survey of the market for an appropriate solver, 
FEMLAB, developed by COMSOL10, was selected. 
FEMLAB is an interactive environment for finite-
element modeling and simulating scientific and 
engineering problems based on partial differential 
equations (PDEs). FEMLAB's ability to arbitrarily 
define and couple any number of nonlinear PDEs, as 
well as work within the MATLAB/SIMULINK 
environment, makes it an attractive tool for studying 
fluid-control interaction. Furthermore, the solution of 
the Ginzburg-Landau equation is provided by 
FEMLAB as a benchmark in their model library10. 
The size of finite element model was determined by 
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trial and error and 300 elements provided a fairly 
accurate model. The feedback forcing is introduced into 
the  model  by  perturbing  the boundary conditions  at 
x = 0. 
 

The details of the FEMLAB model of the 
Ginzburg-Landau equation are as follows: 
• Element Type: ‘solid1(x)’ – creates a 1-D solid 

object that spans all the coordinate values in the 
vector x (1-D domain 0 < x < 120) 

• Number of Elements: 300 
• Number of Nodes: 301 
• Boundary Conditions: A(0,t)=0; A(120,t)=0 
• Time-Step: 0.2 units 
• Total Run-time: 60 units 
• Initial condition: A(x,0)=0.0001 
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Figure 1: Temporal plot of real part (solid line) and 

modulus (dot-dashed line) of A(9.2, t) at 5% above µcrit 
 
Gillies3 reported that his wake model exhibits self-

excited wake oscillations above µo = µcrit = 3.43       
The above coefficients for the study of the spatially 
developing flows, based on the Ginzburg-Landau 
model, were first introduced by Park, Ladd and 
Hendricks5. The value of   µcrit   is of importance; 
therefore an important step for validating the current 
work was to arrive at the same value of µcrit using the 
model currently developed (using FEMLAB) as 
Gillies3. Simulation results show that the FEMLAB 
model predicts the value of µcrit to within 0.3% of that 
obtained by Gillies3 based on the same coefficients of 
the Ginzburg-Landau equation. Figure 1 displays the 
temporal plot of the real part of A(x, t) at 5% above 
criticality. Initially, the amplitude of the real part of 
A(x, t) grows exponentially, and then it almost 
equilibrates at a saturated level, or limit cycle, due to 
the stabilizing cubic nonlinearity. Furthermore, the 
FEMLAB results shown in Fig. 1 compare well with 

those presented by Gillies3. Following the successful 
modeling of the open-loop behavior of the Ginzburg-
Landau equation using FEMLAB, the model may be 
exported to SIMULINK for closed loop studies. In this 
effort, two conditions are examined for the closed-loop 
studies, namely, 12.5% above µcrit and 20% above µcrit . 

 
 

Proper Orthogonal Decomposition 
 
 Feasible real time estimation and control of the 

GL model may be effectively realized by reducing the 
model complexity using POD techniques. POD, a non-
linear model reduction approach referred to in the 
literature as the Karhunen-Loeve expansion6 is based 
on the spectral theory of compact, self-adjoint 
operators. The desired POD model contains an adequate 
number of modes to enable reasonable modeling of the 
temporal and spatial characteristics of the large-scale 
coherent structures inherent in the flow. Further details 
of the POD modeling may be found in Graham, Peraire 
and Tang7,8 .  

 
In this effort, the method of “snapshots” introduced 

by Sirovich9 is employed to generate the basis functions 
of the POD spatial modes from the numerical solution 
of the GL equations obtained using FEMLAB. The 
resulting spatial modes of the POD enable the GL 
equations to be projected using a least-squares method 
to yield a set   of ordinary differential  equations 
(O.D.E.). The POD algorithm was realized in 
MATLAB and contains the following steps: 

 
Step I - Load and arrange data obtained from the 

FEMLAB solution of the GL wake model. 

             Step II - Adjust the data so that the mean of the 
ensemble of snapshots, represented by vectors, 
v, is zero. This is accomplished by computing 
the 'average snapshot' and then subtracting this 
profile from each member of the ensemble. 
This is done mainly for reasons of scale; i.e. 
the deviations from the mean contain 
information of interest but may be small 
compared with the original signal. 

 

 
Step III - Compute the empirical correlation matrix, R. 

A simple approximation technique is applied 
to obtain the numerical integration. In this 
effort, the correlation matrix is computed 
using the inner product. 

 
Step IV - Compute the eigenvalues and the 

eigenfunctions. Since the eigenvalues measure 
the relative energy of the system dynamics 
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contained in that particular mode, they may be 
normalized to correspond to a percentage.   

The mode shapes for the first two modes for 
Im(A(x,t)) are presented in Figures 2 and 3 for both the 
conditions described in Table 1.  

Step V – Check the orthogonality with the Kronecker 
delta function for the orthogonality matrix of 
the eigenfunctions. 

 
 

 
Step VI – Determine the time histories of the temporal 

coefficients of the POD model by applying the 
least squares technique to the spatial modes 
and the unforced flow. 

 
Step VII – If required, reconstruct the system response 

based on the low-dimensional model. 
 
 
The POD algorithms, based on the above steps and 

realized in MATLAB, were applied to the two 
conditions studied, namely, 12.5% above µcrit and 20% 
above µcrit. The energy content for the first four modes 
of the real and the imaginary parts of A(x,t) is presented 
in Table 1. It can be seen that more than 99.8% of the 
kinetic energy of the flow lies in the first two modes. It 
will be shown later that the estimation process is based 
on the Im(A(x,t)) alone.  
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Figure 3: Normalized Spatial Eigenfunctions of 

Im(A(x,t)) at 20% above µcrit 

 
 
 
A close look at Figures 2-3 shows the effect of 

increasing “Reynolds Number” on the mode shapes. As 
we move from 12.5% above µcrit  (Figure 2) to 20% 
above µcrit  (Figure 3), we observe that there is an 
increase in the value of the normalized eigenfunctions 
between 0-10 along the x-axis. This is the area referred 
to by Gillies3 as the “absolutely unstable” region. The 
multiple sensor strategy examined by Gillies3  
comprised of placing two sensors: one at x1 = 4.8 and 
the other at x2 = 9.6. The signals received from these 
two sensors were utilized in the proportional feedback 
control law. This strategy enabled stabilizing the 
Ginzburg-Landau wake up to 12.5% above µcrit. 

  
Figure 2: Normalized Spatial Eigenfunctions of 

Im(A(x,t)) at 12.5% above µcrit 

 
 

 
 

Condition Mode I Mode II  Mode III Mode IV 
Studied Re Im Re Im Re Im Re Im 
12.5% 
Above 

Critical 

 
50.868 % 

 
50.716 % 

 
49.015 % 

 
49.168 % 

 
0.063 % 

 
0.063 % 

 
0.054 % 

 
0.053 % 

20.0% 
Above 

Critical 

 
50.150 % 

 
50.149 % 

 
49.848 % 

 
49.849 % 

 
0.001 % 

 
0.001 % 

 
0.001 % 

 
0.001 % 

 
Table 1:  Energy content for the first four modes of the POD model
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The estimation scheme developed in the next 
section takes the variations of the amplitudes of the 
normalized eigenfunctions into account. Two sensors 
are located similarly as above, namely one at x1 = 4.8 
and the other at x2 ~ 9.6 and an adaptive estimation 
strategy is developed to account for the changes in the 
mode shapes. In this effort, the x-axis grid allows 
positioning of the two sensors at x1 = 4.8 (node 13 of 
the FEMLAB model) and at x2 = 9.2 (node 24 of the 
FEMLAB model). The implications of this approach 
make sense. In a realistic application, the sensor 
locations are usually fixed. The gains of the estimator 
may adapt to the Reynolds Number, calculated in real-
time based on velocity/pressure measurements, by 
utilizing a look-up table.  

The intention of the proposed strategy is that the 
signals provided by the two sensors placed at x1 = 4.8 
and at x2 = 9.2 are processed by the estimator to provide 
the estimates of the first two modes. The estimation 
scheme, based on the linear stochastic estimation 
procedure introduced by Adrian13, predicts the temporal 
amplitudes of the first two POD modes from a finite set 
of measurements obtained from the uncontrolled 
solution of the Ginzburg-Landau wake model. Further 
details of stochastic estimation of POD modes are 
provided by Bonnet et al.14. Recently, this method was 
also used by Carlson and Miller15 to predict the degree 
of flow separation from POD modes on a backward 
facing ramp using ramp pressure measurements. 

 
A set of 100 measurements at x1 = 4.8 and at x2 = 

9.2 were extracted from the uncontrolled steady-state 
FEMLAB solution. These measurements were at 
intervals of 0.2 seconds from t = 40 s. until t = 60 s. The 
temporal mode amplitudes, z1 and z2, obtained in the 
previous section at the above 100 discrete times were 
mapped onto the extracted sensor signals, Im(A(x1,t)) 
and  Im(A(x2,t)), as follows: 

 
 
 

Modal Estimation 
 

 The time  histories of the temporal coefficients 
of the POD model are determined by applying the least 
squares technique to the spatial modes and the unforced 
flow. These time histories are presented in Figures 5 
and 6 for both the conditions described in Table 1. The 
general hypothesis of this research effort is that the 
controller should be based on estimates of not more 
than Modes 1 and 2. The motivation is that for practical 
applications it is desirable to reduce the information 
required for estimation to the minimum. The 
requirement for the estimation scheme then is to behave 
as a modal filter that has “combed out” the higher 
modes. The main aim of this approach is to thereby 
circumvent the destabilizing effects of observation 
spillover as described by Balas11. Spillover has been the 
cause for instability in the control of flexible structures 
and modal filtering was found to be an effective 
remedy12 . 

 
z1 (t) = C11 * Im(A(x1,t))  + C12 * Im(A(x2,t))      (5) 

       z2 (t) = C21 * Im(A(x1,t))  + C22 * Im(A(x2,t))      (6) 
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Figure 6: Temporal Mode Amplitudes, z1 & z2 , of 

Im(A(x,t)) at 20% above µcrit 

Figure 5: Temporal Mode Amplitudes, z1 & z2 , of 
Im(A(x,t)) at 12.5% above µcrit 
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The coefficients Cij (i,j = 1,2) in Equations (5)-(6) 
are obtained via the linear stochastic estimation method 
from the set of 100 discrete sensor signals and temporal 
mode amplitudes and are presented in Table 2. This 
procedure is done just once for each Reynolds Number 
before closing the feedback control loop. The main 
advantage of this approach is that it enables usage of 
sensors at fixed sensor locations with just the 



 

coefficients Cij adapting to the Reynolds Number using 
the look-up table presented in Table 2. Basically, Cij 
represents the gains of the estimator and the look-up 
table is the gain scheduler based on the modal 
estimation provided by Equations (5)–(6). Figures 5 and 
6 illustrate the effectiveness of the linear stochastic 
estimation process for the estimation of the first two 
temporal mode amplitudes z1 and z2 .  

   Condition 
Studied 

C11 C12 C13 C14 

12.5% 
Above Critical 

 
1.4524 

 
4.1250 

 
5.1486 

 
- 

4.1643 
20.0% 

Above Critical 
 
- 

4.2744 

 
6.9612 

 
- 

4.7633 

 
- 

0.1911 

Table 2:  Coefficients Cij of the modal estimator 

 
The Closed-Loop System 

 
The closed-loop system, realized in 

MATLAB/SIMULINK, is presented in Figure 7. The 
FEMLAB subsystem contains the 300 node, non-
linear Ginzburg-Landau model. The four signals out of 
FEMLAB are as follows: y1= Re (A(4.8,t)) and y2 = 
Re(A(9.2,t)). They are used for purposes of observation 
alone, whereas, y3 = Im (A(4.8,t)) and y4 = Im(A(9.2,t)) 

are used for the estimation of the temporal mode 
amplitude. Monitoring y1 and y2 as well makes sure that 
the real part of the wake solution, A(x,t), is stabilized 
(see Figures 8 and 9). On the other hand, the best 
indicator that the imaginary part of the solution A(x,t), 
is stabilized is by observing the control input (see 
Figure 10). Although, we are capable of providing 
estimates for both Modes 1 and 2 based on the sensor 
signals extracted from x1 = 4.8 and x2 = 9.2, it was 
found that for the two conditions studied, it is adequate 
for the controller to be based on the estimate of Mode 1 
alone. In Figure 7, Gain 2 and Gain 3 in the Estimator 
Block correspond to coefficients C11 and C12 
respectively. The input to the control block is just the 
estimate of Mode 1. The control scheme is designed 
such that above a certain threshold for the derivative of 
estimated Mode 1, a constant control is applied. Below 
the threshold value a Proportional-Integral-Derivative 
(PID) controller is applied. A proportional controller 
was found to be effective enough for the conditions 
studied i.e. KD and KI were zero. A rate limiter, with  a 
slew rate of ± 1.2, was introduced to ensure that 
physical commands would be introduced by the 
controller into the FEMLAB subsystem. Finally, the 
control was activated arbitrarily after ensuring that the 
system had reached its limit cycle. The control 
parameters used for the two conditions studied are 
provided in Table 3, which is in fact a gain-scheduling 
look-up table that enables the controller to adapt to a 
varying Reynolds Number. 
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Control 
Block 

Estimation 
Block 

Figure 7: SIMULINK Model of the Closed-Loop Control System 
 
 
 

   Condition 
Studied 

KP Constant 
Control 

Derivative 
Threshold 

Rate 
Limiter 

Slew Rate 

Controller 
Switch-On 
Time [sec] 

12.5% 
Above Critical 

 
0.017 

 
0.10 

 
5.0 

 
± 1.2 

 
35 

20.0% 
Above Critical 

 
0.060 

 
0.75 

 
4.0 

 
± 1.2 

 
30 

Table 3:  Parameters of the Controller for the two conditions studied 

 
Simulation Results  

Figure 8: Controlled Wake Signal at 12.5% Above 
Critical 
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Figure 9: Controlled Wake Signal at 20% above 
Critical 

 
The results of the simulation are provided in 

Figures 8-10.  The estimation/control scheme 
developed in this effort provides effective stabilization 
of the Ginzburg-landau wake at the two conditions 
studied. The non-linear dynamics of the Ginzburg-
Landau model has a fixed point that is not at A(x,t) = 0, 
and the controller stabilizes the wake by converging to 
this fixed point (see Figures 8-9). The control input 
time-history, shown in Figure 10, illustrates the 
behavior of the controller for large values of the 
estimated derivative of Mode 1 (25 < t < 40). After 40 
seconds, the PID controller takes over completely and 
stabilizes the system. The rate limiter ensures that the 
control command remains physically realizable in 
nature.  

 

 
0 10 20 30 40 50 60 70 80 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [sec]

Co
nt

ro
l I

np
ut

Figure 10: Control Input at 20% Above Critical 
 
  

Conclusions 
 

A FEMLAB model was developed to solve 
the Ginzburg-Landau equation that contains all the 
stability features of the 2-D cylinder wake pertinent to 
control. The developed model was exported to 
SIMULINK for closed-loop studies. A gain-
scheduling approach is proposed, whereby, for a given 
sensor configuration, the estimation and controller 

gains adapt by means of a look-up table to the variation 
in the Reynolds Number. This method is relatively 
simple and easy to implement in a real-time scenario. 
The control approach, applied to the 300 node 
FEMLAB model at 20% above the unforced critical 
Reynolds number stabilizes the entire wake for a 
proportional gain of 0.06. While the controller uses 
only the estimated temporal amplitude of the first mode 
of Im(A(x,t)), all higher modes are stabilized. This 
suggests that the higher order modes are caused by a 
secondary instability. Thus they are suppressed once the 
primary instability is controlled.  

 
As opposed to the recommendations proposed by 

Gillies3, who recommended the introduction of more 
sensors, it has been shown that by introducing an 
estimation scheme based on a low-dimensional POD 
model, two sensors are adequate for a substantial 
further extension of the onset of the instability from 
12.5% above criticality to 20% above criticality. 
Continuing studies will aim at extending the onset of 
instability still further in an attempt to examine the 
limits of a two-sensor estimation/control strategy. In 
addition, the control approach will be further examined 
to observe its sensitivity to time delays, actuator 
limitations, modeling and estimation errors and sensor 
noise. In parallel, this approach will be applied to 
experimental and computational studies of the control 
of a two-dimensional circular cylinder wake at the US 
Air Force Academy. 
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