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USAFA Closed-loop Flow Control Program
Part 1

=> Demonstrate closed-loop control of a bluff-body wake
 Circular cylinder in a cross-flow at Re,=125
— Cylinder can rotate about its longitudinal axis: control input

« Using wake velocity measurements develop a reduced-
order model of the wake when the cylinder oscillates

» Use this model to understand the response of the wake to
the control input

» Develop a feedback control scheme that reduces flow-
induced vibration and drag



Characteristics & Control of the
Cylinder Wake

Characteristics

* A region of absolute instability in the near-wake gives rise to a self-
sustained oscillation

— Manifested as the Karman vortex street
— Low-dimensional flow

« Oscillating wake flow feeds back unsteady forces to the cylinder

- Flow-induced vibrations
Feedback Control

« Single sensor feedback can be effective at locally reducing wake
oscillations = at sensor location

» 3-D effects from along the span re-establish shedding away from
sensor (Roussopoulos & Monkewitz, 1996)

 Multi-sensor control works better but the control window closes as
Reynolds number increases (Gillies, 1998)
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Experimental Facility & Conditions

Water channel

Vortex shedding frequency is a fcn of Re
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Rotational forcing: Q, =

— Seventeen forcing conditions,

0.0<Q, <15



PIV Measurements

Velocity field measurements were made with Particle Image
Velocimetry (U, V)
— Seed water w/ small particles (10um diameter)

— Illuminate particles & take two, short-exposure photographs separated in
time by a small, known At

— Particle displacements Ax & Ay divided by At give velocities (U,V)
— Data images were acquired at 15 Hz, asynchronously & phase-averaged
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Contour plots show cross-span vorticity, @_ = 3 — 5
% A

» N ) e — . >0
ey : B o <0

(View from below)




Y
2)

3)
4)

5)
6)

7)

Program

Background on experimental setup

Experimental results showing, qualitatively, the effect of
rotational oscillations on the cylinder wake

Introduce reduced-order model approach

Apply modal decomposition to the cylinder wake and
inspect the modes

Obtain a low-dimensional model of the flow from the
POD modes using Galerkin projection

Examine the predictive quality of the low-dimensional
model

Discuss a technique for obtaining a more widely-
applicable set of POD modes and evaluate its
performance



Instantaneous Vorticity Contours
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Mean Wake
S, =0.189
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Modeling Low-dimensional Flows
(Lumley, 1967, 1981)

* Following the work of Gillies (1998) and Graham et al.
(1999), develop a physics-based model of cylinder wake

e Use a Galerkin method to obtain the model
ui(xj’t): Zak(t)wf(xj)
k=1

— Obtain a small set of characteristic velocity fields that possess the
majority of the turbulent kinetic energy in the flow = Proper
Orthogonal Decomposition

— Project the Navier-Stokes equations onto this set to obtain a low-
dimensional model of the flow
« Use this model to recreate the basic features of the wake
— Reconstruct the large-scale vortices in the wake
— @Gain insight to the flow dynamics
— If the model is robust, we might attempt flow control
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Proper Orthogonal Decomposition
(Holmes, Berkooz & Lumley, 1996)

Use POD to obtain modes for Galerkin projection

POD 1s an optimal decomposition in that 1t will “capture
the most energy in the fewest modes”

— Maximize the average projection of u onto ¥

(v
vl

From calculus of variations:

| K (e, x) wlx')dx' = 2 y(x)

where K(x,x") is the two-pt velocity autocorrelation tensor,
Y(x) are the empirical eigenfunctions and A are the
empirical eigenvalues

max

Use “Method of Snapshots™, Sirovich (1987)



Fraction of Total KE

Modal Energy Distribution
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Galerkin Projection

* Modes identify the space in which to construct a model of

the flow

* Project the Navier-Stokes equations onto this space to

obtain our flow-field model

=F(a)

- R
u,(x,,1)= Zak(t)\lff(xz)
\_ k=1 -
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Navier-Stokes Eqns for fluctuation

where F'is a non-linear
function

* Order N of the model depends on how many modes we
require to faithfully represent the large-scale turbulence




Low-Dimensional Model

e Model for a turbulent flow:
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Evaluation of Model
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Reconstruction of the Wake

y/D

U, (x,,1) = <Ui(xl)> +u,(x;,1)

u;(x,,) = a,(0) i, )+ a, () v () + a3 (0) wi () + @, (1) i ()

. o, >0
. o, <0
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Introduction to Data Stacking

* POD analysis for QQ; = 0.2 and 1.5 reveal distinct
differences in the mode sets

— A set of modes for one forcing condition may not well-represent
the flow dynamics for a different forcing condition

— How can we obtain a set of modes that spans a range of forcing
conditions? Use a stack of data sets from different (2,

* A much larger set of data 1s used in the determination of
the POD modes
— Improves the velocity correlation statistics

— Yields a basis that presumably 1s applicable to a wider variety of
flow conditions

» Use data sets for Q, =0.2,0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 to
obtain the POD modes, then model one of the flows
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Comparison of Low-D Model Predictions
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Continuing Work

Model development
— Implement a low-dimensional model with control fcn
— Incorporate 3-D effects into the model

— Better understand the wake response to oscillations at the cylinder

Continuing experimental work: rotational/transverse
oscillations

+() =(1

UW experiments USAFA experiments

Integrate CFD results into the analysis & modeling

Demonstrate closed-loop control of the wake






Closed-loop Flow Control Program

CONTROL PROBLEM

J 7 Vortex Suppression in Cylinder Wake

MODELING THE CONTROLLED FLOW
* Truth Model — CFD (Cobalt), USAFA
* Evaluation Model — Low-dimensional, POD

ESTIMATOR
Real-time mapping of PIV

— measurements onto POD states

CONTROLLER
Real-time mapping of POD states to
actuator commands

CONTROL STRATEGY VERIFICATION
* Truth Model — CFD (Cobalt)
« Water Tunnel Test & Evaluation
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