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INTRODUCTION

• In a two-dimensional cylinder wake, self-excited oscillations in 
the form of periodic shedding of vortices are observed above a 
critical Reynolds number of around 50. 

• These flow-induced non-linear oscillations lead to some 
undesirable effects associated with unsteady pressures such as 
fluid-structure interactions. 

• The only way of suppressing the self-excited flow oscillations is 
by the incorporation of active closed-loop flow control. 

Re = 140: Laminar unsteady wake



3
Feedback Control of a Cylinder Wake Low-Dimensional Model                                          USAF Academy

RESEARCH OBJECTIVE

unsteady

SensorsActuation Controller

steady
Develop a closed-loop 
control strategy to 
suppress the Karman 
vortex street of a 
cylinder at Reynolds 
numbers of 100-120.
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CONTROL APPROACH
• Low-dimensional model identification of the closed-loop system 
based on proper orthogonal decomposition (POD).

Mode 
Estimator

(LSE)

Controller
(acts on 

POD Modes)

Sensors
Actuator

Actuator Command
(Displacement, Velocity)

Flow Modes
(POD Amplitudes)

Sensor Information
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Sketches from: Munson, Young, Okiishi. Fundamentals of Fluid Mechanics. p 601.
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LOW DIMENSIONAL MODELING
Re = 100

K Snapshots of 
Flow Field

U(x,y,t)
V(x,y,t)

4 Mode POD
Model based on 

DNS CFD 
simulations 

N Spatial Modes
M1_U(x,y)
M1_V(x,y)

M2_U(x,y)
....

MK_V(x,y)

K Temporal Mode
Amplitudes

A1(t)
A2(t)
…

AK(t)

The control input was 
added to the POD model 
as an external source that 
emulates the translation 
actuation of the cylinder
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LOW-DIMENSIONAL POD MODEL
• Based on the temporal coefficients of the POD model, the following system of partial 

differential equations was developed using a least squares fit: 

(for k = 1,2,….M)akM21kk fb)A,...A,A(gA +=&

• The function gK is chosen to be cubic: 

(for i,j,k,l =1,2,...M)lji
k
ijl3ji

k
ij2i

k
i1

k
0k AAAcAAcAccg +++=

Ak - time-dependent coefficient of the kth mode
M - total number of modes in the low-dimensional model
gk - nonlinear function of the time-dependent coefficients
fa - control input to the cylinder 
bk - represents the coefficients associated with the control input
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CONDITIONS FOR CONTROLLABILITY

• For nonlinear system 
• The simplest approach to study controllability is to 

consider its linearization

• Definition: The pair (J, B) is state controllable if and only 
if there exists a control fa that will transfer any initial state   
AK(t = 0)to the desired equilibrium point in finite time.

• We will demand that the following algebraic condition for 
controllability:

aKM21KK fb)A,...A,A(gA +=&

aKjK fbAJA ⋅+⋅=& Let B = [b1,b2,…bM]

n)BJBJJBB(rank 1n2 =−MLMMM
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CONTROL APPROACH
• It is desirable to develop estimator and controller strategies that are simple yet 

effective. 
• Let the control law be based on the estimate of only one mode as follows:

• where KP is the proportional gain of the P controller  and A1
est is the estimate of the 

time-dependent coefficient of Mode 1, A1 extracted from sensors placed in the wake .
• An accurate linear stochastic estimator for the first four POD modes of a circular 

cylinder wake was developed based on five sensors in the flow field. 
• Based on this experience, in this effort estimation errors are neglected and it is 

assumed that A1 ~  A1
est .

• Questions raised:
– Is stability of all POD states assured for such a controller? 
– How are the gains of the controller determined? 
– Is such an approach effective?

est
1Pa AKf ⋅−=
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LINEARIZATION OF THE POD MODEL
• The function gk is expanded locally as a Taylor series about the 

desired equilibrium point: Ak = 0 
• Inserting the proposed proportional control law into the 

linearization of Ak yields: 

• JC is the “closed-loop” Jacobian and a linear stability analysis 
based on JC will provide an insight into the behavior of the 
closed-loop system. 

jCk AJA ⋅=&
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STABILIZATION OF THE POD MODEL
• The conditions for asymptotic stability for linearized models about their 

equilibrium point, as follows: if  the Jacobian, JC , has n eigenvalues, 
each of which has a strictly negative real part, then the equilibrium point 
is asymptotically stable.

• The Hartman-Grobman theorem states that the local phase portrait near a 
hyperbolic (all the eigenvalues of the linearization lie off the imaginary 
axis) fixed point is “topologically equivalent” to the phase portrait of the 
linearization.

• A linearized system that is hyperbolic is equivalent in terms of stability 
and bifurcations, chaos and attractors, equilibria and limit cycles to the 
nonlinear POD model.

• From a practical point of view, it is the aim of the control design to find an 
appropriate gain, KP, which will render all the eigenvalues of JC to have a 
negative real part. In addition, the eigenvalues need to lie off the 
imaginary axis by an adequate margin so that the system is hyperbolic.
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CONTROLLABILITY TEST
Based on 4 Mode POD Model

n)BJBJJBB(rank 1n2 =−MLMMMControllability condition:

where n = 4 (number of modes in the prototype wake model)

The matrices J and B are extracted from the above model
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0.0364  0.00600.00650.1293-
0.0258-0.05180.14470.0065

 J  

4)BJBJJBB(rank 1n2 =−MLMMMWe observe that
Therefore, the pair (J, B) is state controllable
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CLOSED-LOOP SIMULATIONS
• MATLAB simulations were run to find an appropriate gain, KP, that will 

render all the eigenvalues of the closed-loop Jacobian, JC, to have a 
negative real part.

Kp Eigenvalues 1 & 2 Eigenvalues 3 & 4 
-1.2 0.0115 ± 0.1300i -0.0310 ± 0.2768i 
-0.8 0.0098 ± 0.1323i -0.0313 ± 0.2769i 
-0.4 0.0081 ± 0.1345i -0.0316 ± 0.2770i 
0.0 0.0065 ± 0.1367i  -0.0320 ± 0.2772i 
0.4 0.0048 ± 0.1388i -0.0324 ± 0.2773i 
0.8 0.0032 ± 0.1409i -0.0327 ± 0.2774i 
1.2 0.0016 ± 0.1429i -0.0331 ± 0.2775i 
1.6 -0.0000 ± 0.1449i -0.0335 ± 0.2776i 
2.0 -0.0016 ± 0.1468i -0.0339 ± 0.2777i 
3.0 -0.0055 ± 0.1514i -0.0350 ± 0.2779i 

 
Therefore, for KP > 1.6, the closed loop system is stable
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CONCLUSIONS
• For the low-dimensional POD model of a cylinder wake instability, conditions for 

controllability and stabilization were developed.

• A simple approach, based on the proportional feedback of the estimate of the first POD 
mode, has been introduced for the control of the temporal growth of the forced prototype 
modes.

• The above control approach was applied to a POD model developed using data obtained 
from a Direct Navier Stokes CFD simulation of a cylinder wake at Re = 100.

• The control approach, simulated in MATLAB using the 4 mode cylinder wake model, 
shows desired closed-loop behavior.

• While the controller uses only the estimated amplitude of the first mode, all four modes 
are stabilized. This suggests that the higher order modes are caused by a secondary 
instability. Thus they are suppressed once the primary stability is controlled.

• The control approach stabilizes the wake fully. Once stabilized, the required actuation 
amplitude drops to 1/1000th of the initial value. This means that very little energy is 
required to maintain a stable wake.


	Feedback Control of a Cylinder Wake Low-Dimensional Model
	INTRODUCTION
	CONTROL APPROACH
	LOW DIMENSIONAL MODELING
	LOW-DIMENSIONAL POD MODEL
	CONDITIONS FOR CONTROLLABILITY
	CONTROL APPROACH
	LINEARIZATION OF THE POD MODEL
	STABILIZATION OF THE POD MODEL
	CONTROLLABILITY TESTBased on 4 Mode POD Model
	CLOSED-LOOP SIMULATIONS
	CLOSED-LOOP SIMULATIONS
	CONCLUSIONS

